Advertisement

Nitrate dynamics in a reed belt of a shallow sand dune lake in Japan: Analysis of nitrate retention using stable nitrogen isotope ratios

  • Haruo Fukuhara
  • Fumiko Nemoto
  • Yoko Takeuchi
  • Nobushige Toda
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 196)

Abstract

A stable nitrogen isotope analysis was used to clarify the relative importance of denitrification and nitrate uptake by plants in the nitrate reduction in a reed belt of L. Kamisagata (N 37°49′, E 138°53′, alt. 4.5 m, depth 30–80 cm, area 0.025 km2), one of about 20 sand dune lakes in Japan. A very high concentration of NO3 -N with 19.0 ±5.9 mg N l−1 in spring sources decreased during passage through the reed belt along two set transect lines about 120 m long in any season, whereas progressive enrichment in 15N-NO3 in flowing water was detected. Loss rate of nitrate ranged from 38.4 to 73.1% with an average of 56.7 ±11.6%. Enrichment factors calculated using a Rayleigh curve method ranged from - 1.03 to -5.12%.. The contribution of denitrification to nitrate loss ranged from 6 to 28%, with a mean of 19.5% (±7.0), whereas that of plant uptake was from 72 to 94%, with a mean of 80.5% (±7.0), indicating the importance of vegetation in a sand dune riparian zone. A technique using the variation of natural abundance of 15N may provide useful information on the nitrate dynamics in artificial or natural wetlands under a nondestructive condition.

Keywords

15Nitrate Enrichment factor Wetland Sand dune lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bastiviken, S. K., P. G. Eriksson, A. Premrov & K. Tonderski, 2005. Potential denitrification in wetland sediments with different plant species detritus. Ecological Engineering 25: 183–190.CrossRefGoogle Scholar
  2. Blackmer, A. M. & J. M. Bremner, 1977. Nitrogen isotope discrimination in denitrification of nitrate in soils. Soil Biology and Biochemistry 9: 73–77.CrossRefGoogle Scholar
  3. Bottcher, J., O. Strebel, S. Voerkelius & H.-L. Schmidt, 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology 114: 413–424.CrossRefGoogle Scholar
  4. Chen, D. J. Z. & K. T. B. MacQuarrie, 2004. Numerical simulation of organic carbon, nitrate, and nitrogen isotope behaviour during denitrification in a riparian zone. Hydrology 293: 235–254.CrossRefGoogle Scholar
  5. Clement, J.-C., R. M. Holmes, B. J. Peterson & G. Pinay, 2003. Isotopic investigation of denitrification in a riparian ecosystem in Western France. Journal of Applied Ecology 40:1035–1048.CrossRefGoogle Scholar
  6. Cronk, J. K. & M. S. Fennessy, 2001. Wetland Plants: Biology and Ecology. Lewis Publishers, New York.Google Scholar
  7. Dahm, G N., N. B. Grimm, P. Marmonier, H. M. Valett & P. Vervier, 1998. Nutrient dynamics at the interface between surface waters and groundwaters. Freshwater Biology 40: 427–451.CrossRefGoogle Scholar
  8. Dhondt, K., P. Boeckx, O. V. Cleemput & G. Hofman, 2003. Quantifying nitrate retention processes in a riparian buffer zone using the natural abundance of 15N in NO3 . Rapid Communication in Mass Spectrometry 17:2597–2604.CrossRefGoogle Scholar
  9. Fukada, T., K. M. Hiscock, P. F. Dennis & T. Grischek, 2003. A dual isotope approach to identify denitrification in groundwater at river-bank infiltration site. Water Research 37: 3070–3078.PubMedCrossRefGoogle Scholar
  10. Fukuhara, H., A. Kawakami & T. Shimogaito, 2003. Characteristics of nutrient dynamics in Lake Sagata (Niigata Prefecture) Japan, a shallow sand-dammed lake supplied by spring water with special reference to nitrates. Hydrobiologia 506: 93–99.CrossRefGoogle Scholar
  11. Fustec, E., A. Mariotti, X. Grillo & J. Sajus, 1991. Nitrate removal by denitrification in alluvial groundwater: Role of a former channel. Journal of Hydrology 123: 337–354.CrossRefGoogle Scholar
  12. Hey, D., 2002. Nitrogen farming: Harvesting a different crop. Restoration Ecology 10: 1–10.CrossRefGoogle Scholar
  13. Hill, A. R., 1996. Nitrate removal in stream riparian zones. Journal of Environmental Quality 25: 743–755.Google Scholar
  14. Hill, A. R., K. J. Devito, S. Campagnolo & K. Sanmuga-das, 2000. Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51: 193–223.CrossRefGoogle Scholar
  15. Huett, D. O., S. G. Morris, G. Smith & N. Hunt, 2005. Nitrogen and phosphorus removal from plant runoff in vegetated and unvegetated subsurface flow wetlands. Water research 39: 3529–4272.CrossRefGoogle Scholar
  16. Jansson, M., R. Andersson, H. Berggren & L. Leonardson, 1994. Wetlands and lakes as nitrogen traps. Ambio 23: 320–325.Google Scholar
  17. Kawanishi, T., Y. Hayashi, N. Kihou, T. Yoneyama & Y. Ozaki, 1993. Dispersion effects on the apparent isotope fractionation factor associated with denitrification in soil; evaluation by mathematical model. Soil Biology and Biochemistry 25: 349–354.CrossRefGoogle Scholar
  18. Kellman, L. M. & C. Hillaire-Marcel, 2003. Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agriculture Ecosystems & Environment 95: 87–102.CrossRefGoogle Scholar
  19. Kendall, C., 1998. Tracing nitrogen sources and cycling in catchment. In Kendal, C. & J. J. McDonnell (eds), Isotope tracers in catchment hydrology, Elsevier, Amsterdam, 519–576.Google Scholar
  20. Khol, D. H. & G. B. Shearer, 1995. Using variations in natural 15N abundance to investigate N cycle processes. In Wada, E., T. Yoneyama, M. Minagawa, T. Ando & B. D. Fry (eds), Stable isotopes in the biosphere. Kyoto University Press, Kyoto, Japan, 103–130.Google Scholar
  21. Lehmann, M. F., P. Reichert, S. M. Bernasconi, A. Barbieri & J. A. McKenzie, 2003. Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochemica et Cosmochemica Acta 67: 2529–2542.CrossRefGoogle Scholar
  22. Lin, Y.-F., S.-R. Jing, T.-W. Wang & D.-Y. Lee, 2002. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environmental Pollution 119: 413–420.PubMedCrossRefGoogle Scholar
  23. Lund, L. J., A. J. Horne & A. E. Williams, 2000. Estimating denitrification in a large constructed wetland using stable nitrogen isotope ratios. Ecological Engineering 14: 67–76.CrossRefGoogle Scholar
  24. Mariotti, A., A. Landreau & B. Simon, 1988. 15N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochimica et Cosmohimica Acta 52: 1869–1878.CrossRefGoogle Scholar
  25. Mariotti, A., J. C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux & P. Tardieux, 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62: 413–430.CrossRefGoogle Scholar
  26. Mariotti, A., F. Mariotti, N. Amarger, G. Pizelle, J.-M. Ngambi, M.-L. Champigny & A. Moyse, 1980. Fractionnements isotopiques de l’azote lors des processus d’absorption des nitrates et de fixation de l’azote atmosphe’rique par les plantes. Physiologie Végétale 18: 163–181.Google Scholar
  27. Mengis, M., S. L. Schiff, M. Harris, M. C. English, R. Aravena, R. J. Elgood & A. MacLean, 1999. Multiple geochemical and isotopic approaches for assessing ground water NO3 elimination in a riparian zone. Ground water 37: 448–457.CrossRefGoogle Scholar
  28. Naiman, R. H. Decamps & M. E. McClain, 2005. Riparia: Ecology, conservation, and management of streamside communities. Elsevier, Tokyo, 430 pp.Google Scholar
  29. Nonaka, M., R. Abe & H. Tanabe, 1997. Increasing groundwater nitrate nitrogen concentration in sand dune upland soil by fertilizer application. Sand Dune Research 44: 23–29 (In Japanese with English summary).Google Scholar
  30. Park, K.L. & K. Kumazawa, 1998. Variation of natural abundance of nitrogen isotope due to denitrification. Journal of the Science of Soil and Manure, Japan 69: 293–295 (in Japanese).Google Scholar
  31. Robinson, D., 2001. δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution 16: 153–162.CrossRefGoogle Scholar
  32. Saunders, D. L. & J. Kalff, 2001. Nitrogen retention in wetlands, lake and rivers. Hydrobiologia 443: 205–212.CrossRefGoogle Scholar
  33. Sebilo, M, C. Billen, M. Grably & A. Mariotti, 2003. Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63: 35–51.CrossRefGoogle Scholar
  34. Smith, R. L., B. L. Howes & J. H. Duff, 1991. Denitrificaion in nitrate-contaminated groundwater: Occurrence in steep vertical geochemical gradients. Geochimica Cosmohimica Acta 55: 1815–1825.CrossRefGoogle Scholar
  35. Spalding, R. F., M. E. Exner, G. E. Martin & D. D. Snow, 1993. Effects of sludge disposal on groundwater nitrate concentration. Journal of Hydrology 142: 213–226.CrossRefGoogle Scholar
  36. Strickland J. D. H. & T. R. Parsons, 1972. A practical handbook of sea water analysis. Bulletin Fisheries Research Board of Canada 167: 207–211.Google Scholar
  37. Toda, H., U. Uemura T. Okino T. Kawanishi & H. Kawashima, 2002. Use of nitrogen stable isotope ratio of periphyton for monitoring nitrogen sources in a river system. Water Science & Technology 46: 431–435.Google Scholar
  38. Tsushima, K., S. Ueda & N. Ogura, 2002. Nitrate loss for denitrification during high frequency research in floodplain groundwater of the Tama River. Water Air and Soil Pollution 137: 167–178.CrossRefGoogle Scholar
  39. Xue, Y., D. A. Kovacic, M. B. David, L. E. Gentry, R. L. Mulvaney & C. W. Lindau, 1999. In situ measurements of denitrification in constructed wetlands. Journal Environmental Quality 28: 263–269.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Haruo Fukuhara
    • 1
  • Fumiko Nemoto
    • 1
  • Yoko Takeuchi
    • 1
  • Nobushige Toda
    • 2
  1. 1.Faculty of Education and Human SciencesNiigata UniversityNiigataJapan
  2. 2.Faculty of ScienceShinshu UniversityMatsumotoJapan

Personalised recommendations