Response of macro in vertebrates to warming, nutrient addition and predation in large-scale mesocosm tanks

  • Heidrun Feuchtmayr
  • Dermot McKee
  • Ian F. Harvey
  • David Atkinson
  • Brian Moss
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 196)

Abstract

There is increasing concern about the effect of climate change on aquatic systems. We examined changes in macroinvertebrate communities caused by increased temperature (3°C above ambient during summer only and continuous 3°C above ambient all year round), influences of fish (Gasterosteus aculeatus L.) and addition of nutrients (nitrogen and phosphorus) in 48 large-scale (3000 1) tanks over a 2 year period. While numbers of Isopoda, Chaoborus, Corixidae, Ephemeroptera, Notonectidae and Odonata were reduced by the presence of fish, nutrient addition caused isopods, corixids, mayflies and odonates to increase in abundance. Impacts of temperature increase were surprisingly low, with only gastropods increasing in heated tanks, suggesting that, overall abundances of most macroinvertebrate taxa will not be severely affected by the predicted temperature rise. To determine if taxa were sampled representatively during the experiment, net sweep samples taken towards the end of the experiment were compared with final macroinvertebrate abundances when the complete contents of each tank were harvested. We found that net sweeping is an appropriate semi-quantitative method for most taxa in mesocosm tanks. However, mites, coleopteran adults and larvae, dipterans and Chaoborus were not adequately sampled. This might explain why we could not detect any treatment effects of temperature, fish or nutrients on mites, coleopterans and dipterans and calls for different sampling techniques for these taxa, especially in ponds with vegetation stands.

Keywords

Global climate change Temperature Sampling technique Sweepnet Gasterosteus aculeatus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, D., 1996. Ectotherm life-history responses to developmental temperature. In Johnson I. A., A. F. Bennett (eds) Animals and Temperature: Phenotypic and Evolutionary Adaptation. Cambridge University Press, Cambridge: 183–204.Google Scholar
  2. Baulch, H. M., D. W. Schindler, M. A. Turner, D. L. Findlay & M. J. Paterson, 2005. Effects of warming on benthic communities in a boreal lake: implications of climate change. Limnology and Oceanography 50: 1377–1392.Google Scholar
  3. Connor, A. O., S. Bradish, T. Reed, J. Moran, E. Regan, M. Visser, M. Gormally & M. S. Skeffington, 2004. A comparison of the efficacy of pond-net and box sampling methods in turloughs — Irish ephemeral aquatic systems. Hydrobiologia 524: 133–144.CrossRefGoogle Scholar
  4. Costil, K. & J. Daguzan, 1995. Effect of temperature on reproduction in Planorbarius corneus (L) and Planor-bis planorbis (L) throughout the life-span. Malacologia 36: 79–89.Google Scholar
  5. Gurevitch, J. & S. T. Chester, 1986. Analysis of Repeated Measures Experiments. Ecology 67: 251–255.CrossRefGoogle Scholar
  6. Hogg, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global-warming thermal regime: An ecosystem-level manipulation. Ecology 77: 395–407.CrossRefGoogle Scholar
  7. Houghton, J. E. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell & C. A. Johnson, 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK.Google Scholar
  8. Humphries, P., J. E. Growns, L. G. Serafini, J. H. Hawking, A. J. Chick & P. S. Lake, 1998. Macroinvertebrate sampling methods for lowland Australian rivers. Hydrobiologia 364: 209–218.CrossRefGoogle Scholar
  9. IPCC 2007 Climate Change 2007: The Physical Science Basis-Summary for Policymakers, which is available on http://ipcc-wgl.ucar.edu/.
  10. Kiffney, P. M. & J. S. Richardson, 2001. Interactions among nutrients, periphyton, and invertebrate and vertebrate (Ascaphus truei) grazers in experimental channels. Copeia 2: 422–429.CrossRefGoogle Scholar
  11. Kozminsky, E. V., 2003. Seasonal dynamics of reproduction and reproductive parameters of Bithynia tentaculata (Gastropoda, Prosobranchia). Zoologichesky Zhurnal 82: 325–331.Google Scholar
  12. Lewis, D. B. & J. J. Magnuson, 1999. Intraspecific gastropod shell strength variation among north temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences 56: 1687–1695.CrossRefGoogle Scholar
  13. McKee, D., A. Atkinson, S. Collings, J. Eaton, I. Harvey, K. Hatton, T. Heyes, D. Wilson, L. Wolstenholme & B. Moss, 2000. Heated aquatic microcosms for climate change experiments. Freshwater Forum 14: 51–58.Google Scholar
  14. McKee, D. & D. Atkinson, 2000. The influence of climate change scenarios on populations of the mayfly Cloeon dipterum. Hydrobiologia 441: 55–62.CrossRefGoogle Scholar
  15. McKee, D., D. Atkinson, S. Collings, J. Eaton, I. Harvey, T. Heyes, K. Hatton, D. Wilson & B. Moss, 2002a. Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshwater Biology 47: 1557–1570.CrossRefGoogle Scholar
  16. McKee, D., K. Hatton, J. W. Eaton, D. Atkinson, A. Atherton, I. Harvey & B. Moss, 2002b. Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquatic Botany 74: 71–83.CrossRefGoogle Scholar
  17. McKee, D., D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson & B. Moss, 2003. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnology and Oceanography 48: 707–722.Google Scholar
  18. Merritt, R. W., K. W. Cummins & V. H. Resh, 1996. Design of aquatic insect studies: collecting, sampling and rearing procedures. In Merritt R. W., & K. W Cummins (eds) An introduction to the aquatic insects of North America, 3 rd edn. Kendall/ Hull Publishing Company, Iowa 12–28.Google Scholar
  19. Moss, B., G. Phillips & J. Madgwick, 1996. A guide to the restoration of nutrient-enriched shallow lakes. Broads Authority, WW Hawes, UK.Google Scholar
  20. Moss, B., D. McKee, D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes & D. Wilson, 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology 40: 782–792.CrossRefGoogle Scholar
  21. Muzaffar, S. B. & M. H. Colbo, 2002. The effects of sampling technique on the ecological characterization of shallow, benthic macroinvertebrate communities in two Newfoundland ponds. Hydrobiologia 477: 31–39.CrossRefGoogle Scholar
  22. Noges, P., T. Noges, L. Tuvikene, H. Smal, S. Ligeza, R. Kornijow, W. Peczula, E. Becares, F. GarciaCriado, C. Alvarez-Carrera, C. Fernandez-Alaez, C. Ferriol, R. M. Miracle, E. Vicente, S. Romo, E. Van Donk, W. van de Bund, J. P. Jensen, E. M. Gross, L. A. Hansson, M. Gyllstrom, M. Nykanen, E. de Eyto, K. Irvine, D. Stephen, S. Collins & B. Moss, 2003. Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia 506: 51–58.CrossRefGoogle Scholar
  23. Rosenberg, D. M. & V. H. Resh, 1992. Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: Rosenberg D. M., V. H. Resh (eds) Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York, London 1–9.Google Scholar
  24. Sagarin, R. D., J. P. Barry, S. E. Gilman & C. H. Baxter, 1999. Climate-related change in an intertidal community over short and long time scales. Ecological Monographs 69: 465–490.CrossRefGoogle Scholar
  25. Schiermeier, Q., 2004. Modellers deplore’ short-termism’ on climate. Nature 428: 593–593.PubMedCrossRefGoogle Scholar
  26. Stark, J. D., 1993. Performance of the macroinvertebrate community index–Effects of sampling method, sample replication, water depth, current velocity, and substratum on index values. New Zealand Journal of Marine and Freshwater Research 27: 463–478.CrossRefGoogle Scholar
  27. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of chironomidae as quantitative indicators of past climatic-change. Canadian Journal of Fisheries and Aquatic Sciences 48: 975–987.Google Scholar

Copyright information

© Springer Science-Business Media B.V. 2007

Authors and Affiliations

  • Heidrun Feuchtmayr
    • 1
  • Dermot McKee
    • 1
  • Ian F. Harvey
    • 1
  • David Atkinson
    • 1
  • Brian Moss
    • 1
  1. 1.School of Biological Sciences, Biosciences BuildingUniversity of LiverpoolLiverpoolUK

Personalised recommendations