Skip to main content

The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick’s Swan — Fennel Pondweed system

  • Conference paper
Shallow Lakes in a Changing World

Part of the book series: Developments in Hydrobiology ((DIHY,volume 196))

  • 2022 Accesses

Abstract

The role of aquatic macrophytes in stimulating biodiversity and maintaining clear waters is currently undisputed. The management of (eutrophic) shallow waters is therefore often directed at (re-)establishing macrophyte domination. In contrast, the role of water birds has long been considered of minor importance for the functioning of fresh water ecosystems. Indeed, in terms of biomass and production, water birds constitute only a minor part of these systems. However, water birds may graze heavily on water plants under certain circumstances, and the question arises whether herbivorous water birds have an important indirect effect on shallow fresh water systems. Mainly illustrated with the interaction between Bewick’s Swans and Fennel Pondweed, we present data on the role that water plants may play in the life of water birds and how water birds may impact water plants’ fitness in terms of survival, production, dispersal and competitive ability. It appears that water plants may be crucial for water birds during periods of highenergy requirements, such as migration. Despite the plants’ costs associated with water bird grazing, the interaction between water birds and water plants varies in nature from an apparent predator-prey relationship to a mutually beneficial interaction depending on the context and the perspective. For the case of the Bewick’s Swan-Fennel Pondweed interaction, regular bird grazing is sustainable and may actually favour the plant’s dispersal. Thus, Bewick’s Swans themselves may in fact play a crucial role in establishing and maintaining the Fennel Pondweed rich staging sites between the swans’ wintering and breeding grounds, which are vital for the swans’ successful migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, K.F., R. L. Jefferies & R. T. Alisauskas, 2005. The dynamics of landscape change and snow geese in mid-continent North America. Global Change Biology 11: 841–855.

    Article  Google Scholar 

  • Beekman, J.H., 1997. International censuses of the NW-European Bewick’s Swan population, January 1990 and 1995. Swan Specialist Group Newsletter 6: 7–9.

    Google Scholar 

  • Beekman, J.H., B. A. Nolet & M. Klaassen, 2002. Skipping swans: fuelling rates and wind conditions determine differential use of migratory stopover sites of Bewick’s Swans Cygnus bewickii. Ardea 90: 437–460.

    Google Scholar 

  • Beekman, J.H., M. R. Van Eerden & S. Dirksen, 1991. Bewick’s Swans Cygnus columbianus bewickii utilising the changing resource of Potamogeton pectinatus during autumn in the Netherlands. Wildfowl Suppl. 1: 238–248.

    Google Scholar 

  • Bellrose, F.G, 1980. Ducks, Geese and Swans in North America, 3 edition. Stackpole Books, Harrisburg, PA, USA.

    Google Scholar 

  • Brouwer, G.A. &L. Tinbergen, 1939. De verspreiding der kleine zwanen, Cygnus b. bewickii Yarr., in de Zuiderzee, voor en na de verzoeting. Limosa 12: 1–18.

    Google Scholar 

  • Charalambidou, I., L. Santamaría, G Janssen & B. A. Nolet, 2005. Digestive plasticity in Mallard ducks modulates dispersal probabilities of aquatic plants and crustaceans. Functional Ecology 19: 513–519.

    Article  Google Scholar 

  • Clausen, P., B.A. Nolet, A. D. Fox & M. Klaassen, 2002. Long-distance endozoochorus dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe-a critical review of possibilities and limitations. Acta Oecologica 23: 191–203.

    Article  Google Scholar 

  • Coops, H., E. H. Van Nes, M. S. Van den Berg & G. D. Butijn, 2002. Promoting low-canopy macrophytes to compromise conservation and recreational navigation in a shallow lake. Aquatic Ecology 36: 483–492.

    Article  Google Scholar 

  • Darwin, C., 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Jhn Murray: London.

    Google Scholar 

  • Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van der Gucht, C. Perez-Martinez, T. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. Lopez-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multigroup biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.

    Article  Google Scholar 

  • Dirksen, S., J. H. Beekman & T. H. Slagboom, 1991. Bewick’s Swans Cygnus columbianus bewickii in the Netherlands: numbers, distribution and food choice during the wintering season. Wildfowl Suppl. 1: 228–237.

    Google Scholar 

  • Engelhardt, K. A. M. & M. E. Ritchie, 2002. The effect of aquatic plant species richness on wetland ecosystem processes. Ecology 83: 2911–2924.

    Google Scholar 

  • Hangelbroek, H.H. &L. Santamaría, 2004. Regulation of propagule size in the aquatic pseudo-annual Potamogeton pectinatus: are genetic and maternal nongenetic effects additive? Evolutionary Ecology Research 6: 147–161.

    Google Scholar 

  • Hay, M.E., J. D. Parker, D. E. Burkepile, G. G Caudill, A. E. Wilson, Z. P. Hallinan, & A. D. Chequer, 2004. Mutualisms and aquatic community structure: the enemy of my enemy is my friend. Annual Review of Ecology Evolution and Systematics 35: 175–197.

    Article  Google Scholar 

  • Jefferies, R.L., A.P. Jano & K. F. Abraham, 2006. A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. Journal of Ecology 94: 234–242.

    Article  Google Scholar 

  • Jefferies, R. L., D. R. Klein & G. R. Shaver, 1994. Vertebrate herbivores and northern plant communities: reciprocal influences and responses. Oikos 71: 193–206.

    Article  Google Scholar 

  • Jonzén, N., B. A. Nolet, L. Santamaría & M. G. E. Svensson, 2002. Seasonal herbivory and mortality compensation in a swan-pondweed system. Ecological Modelling 147: 209–219.

    Article  Google Scholar 

  • Kerbes, R. H., P. M. Kotanen & R. L. Jefferies, 1990. Destruction of wetland habitats by lesser snow geese: a keystone species on the west coast of Hudson Bay. Journal of Applied Ecology 27: 242–258.

    Article  Google Scholar 

  • King, R.A., R. J. Gornall G. D. Preston & J. M. Croft, 2002. Population differentiation of Potamogeton pectinatus in the Baltic Sea with reference to waterfowl dispersal. Molecular Ecology 11: 1947–1956.

    Article  PubMed  CAS  Google Scholar 

  • Knapton, R. W. & S. A. Petrie, 1999. Changes in distribution and abundance of submerged macrophytes in the Inner Bay at Long Point, Lake Erie: implications for foraging waterfowl. Journal of Great Lakes Research 25: 73–798.

    Article  Google Scholar 

  • LaMontagne, J., L. J. Jackson & R. M. R. Barclay, 2003. Compensatory growth responses of Potamogeton pectinatus to foraging by migrating trumpeter swans in spring stop over areas. Aquatic Botany 76: 235–244.

    Article  Google Scholar 

  • Lauridsen, T. L., E. Jeppesen & F. Østergaard Andersen, 1993. Colonization of submerged macrophytes in shallow fish manipulated Lake Væng: impact of sediment composition and waterfowl grazing. Aquatic Botany 46: 1–15.

    Article  Google Scholar 

  • Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41: 195–224.

    Article  Google Scholar 

  • Lodge, D. M., G. Cronin, E. van Donk & A. J. Froelich, 1998. Impact of herbivory on plant standing crop: comparisons among biomes, between vascular and nonvascular plants, and among freshwater herbivore taxa. In Jeppesen E., M. Søndergaard, M. Søndergaard, & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 149–174.

    Google Scholar 

  • Mader, E., W. Van Vierssen & K. Schwenk, 1998. Clonal diversity in the submerged macrophyte Potamogeton pectinatus L. inferred from nuclear and cytoplasmic variation. Aquatic Botany 62: 147–160.

    Article  Google Scholar 

  • Merne, O.J., 1972. Bewick’s Swans feeding on waste potatoes and other agricultural crops. British Birds 65: 394–395.

    Google Scholar 

  • Miyabayashi, Y. & T. Mundkur, 1999. Atlas of Key Sites for Anatidae in the East Asian Flyway. Wetland International. http://www.jawgp.org/anet/aaal999/ aaaendx.htm.

  • Mullié, W. C. &E. P. R. Poorter, 1977. Aantallen, verspreiding en terreinkeus van de kleine zwaan bij vijf landelijke tellingen in 1976 en 1977. Watervogels 2: 85–96.

    Google Scholar 

  • Nolet, B.A., 2004. Overcompensation and grazing optimisation in a swan-pondweed system? Freshwater Biology 49: 1391–1399.

    Article  Google Scholar 

  • Nolet, B.A., V. A. Andreev, P. Clausen, M. J. M. Poot & E. G. J. Wessel, 2001. Significance of the White Sea as a stopover for Bewick’s Swans Cygnus columbianus bewickii in spring. Ibis 143: 63–71.

    Google Scholar 

  • Nolet, B.A., R. M. Bevan, M. Klaassen, O. Langevoord & Y. G. J. T. Van der Heijden, 2002. Habitat switching by Bewick’s swans: maximisation of average longterm energy gain? Journal of Animal Ecology 71: 979–993.

    Article  Google Scholar 

  • Nolet, B.A., V. N. Fuld & M. E. C. Van Rijswijk, 2006. Foraging costs and accessibility as determinants of giving-up densities in a swan-pondweed system. Oikos 112: 353–362.

    Article  Google Scholar 

  • Nolet, B. A. & M. Klaassen, 2005. Time and energy constraints in demanding phases of the annual cycle: an example of time limitation in refuelling migratory swans. Oikos 111: 302–310.

    Article  Google Scholar 

  • Noordhuis, R., D. T. Van der Molen & M. S. Van den Berg, 2002. Response of herbivorous water-birds to the return of Chara in Lake Veluwe, The Netherlands. Aquatic Botany 72: 349–367.

    Article  Google Scholar 

  • Olff, H. &M. E. Ritchie, 1998. Effects of herbivores on grassland plant diversity. Trends in Ecology and Evolution 13: 261–265.

    Article  Google Scholar 

  • Pacala, S.W. & M. J. Crawley, 1992. Herbivores and plant diversity. American Naturalist 140: 243–260.

    Article  CAS  PubMed  Google Scholar 

  • Perrow, M. R., J. H. Schutten, J. R. Howes, T. Holzer, F. J. Madgwick & A. J. D. Jowitt, 1997. Interactions between coot (Fulica atra) and submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342/343: 241–255.

    Article  Google Scholar 

  • Person, B.T., M. P. Herzog, R. W. Ruess, J. S. Sedinger, R. M. Anthony & C. A. Babcock, 2003. Feedback dynamics of grazing lawns: coupling vegetation change with animal growth. Oecologia 135: 583–592.

    PubMed  Google Scholar 

  • Polunin, N.V. C., 1984. The decomposition of emergent macrophytes in fresh-water. Advances in Ecological Research 14: 115–166.

    Article  Google Scholar 

  • Prop, J. & J. M. Black, 1998. Food intake, body reserves and reproductive success of barnacle geese Branta leucopsis staging in different habitats. Norsk Polarinstitutt Skrifter 200: 175–193.

    Google Scholar 

  • Rodríguez-Gironés, M. A., H. Sandsten & L. Santamaría, 2003. Asymmetric competition and the evolution of propagule size. Journal of Ecology 91: 554–562.

    Article  Google Scholar 

  • Sandsten, H. &M. Klaassen, 2002. Waterfowl foraging affects competitive ability and distribution of Potamogeton pectinatus and P. perfoliatus. In Sandsten H. (ed), Waterfowl Herbivory on Submerged Macrophytes in Eutrophic Lakes. Lnd University, Lund.

    Google Scholar 

  • Santamaría, L., 2002. Selective waterfowl herbivory affects species dominance in a submerged plant community. Archiv für Hydrobiologie 153: 353–365.

    Google Scholar 

  • Santamaría, L., J. Figuerola, J. J. Pilon, M. Mjelde, A. J. Green, T. de Boer, R. A. King & R. J. Gornall, 2003. Plant performance across latitude: the role of plasticity and local adaptation in an aquatic plant. Ecology 84: 2454–2461.

    Article  Google Scholar 

  • Santamaría, L. & M. A. Rodríguez-Gironés, 2002. Hiding from swans: optimal burial depth of sago pondweed tubers foraged by Bewick’s swans. Journal of Ecology 90: 303–315.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London [etc.]

    Google Scholar 

  • Scott, D.A. &P. M. Rose, 1996. Atlas of Anatidae Populations in Africa and Western Eurasia. Wetlands International Publication No. 41, Wageningen, The Netherlands.

    Google Scholar 

  • Shelford, V.E., 1918. Conditions of coexistence. In Ward H. B. & G. C. Whipple(eds), Freshwater Biology. John Wiley, New York: 21–60.

    Google Scholar 

  • Søndergaard, M., L. Bruun, T. Lauridsen, E. Jeppesen & T. V. Madsen, 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquatic Botany 53: 73–84.

    Article  Google Scholar 

  • Van den Berg, M.S., H. Coops, J. Simons & A. De Keizer, 1998. Competition between Chara aspera and Potamogeton pectinatus as a function of temperature and light. Aquatic Botany 60: 241–250.

    Article  Google Scholar 

  • Vanden Berg, M.S., W. Joosse & H. Coops, 2003. A statistical model predicting the occurrence and dynamics of submerged macrophytes in shallow lakes in the Netherlands. Hydrobiologia 506–509: 611–623.

    Article  Google Scholar 

  • Van Eerden, M. R., R. H. Drent, J. Stahl & J. P. Bakker, 2005. Connecting seas: western Palaearctic continental flyway for water birds in the perspective of changing land use and climate. Global Change Biology 11: 894–908.

    Article  Google Scholar 

  • Van Nes, E. H, M. Scheffer, M. S. Van den Berg & H. Coops, 2003. Charisma: a spatial explicit simulation model of submerged macrophytes. Ecological Modelling 159: 103–116.

    Article  Google Scholar 

  • Van Vierssen, W., M. Hootsmans & J. Vermaat, 1994. Lake Veluwe, a Macrophyte-dominated System under Eutrophication Stress. Kuwer Academic Publishers, Dordrecht [etc.].

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd edition. W.B. Saunders, Philadelphia, PA, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this paper

Cite this paper

Klaassen, M., Nolet, B.A. (2007). The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick’s Swan — Fennel Pondweed system. In: Gulati, R.D., Lammens, E., De Pauw, N., Van Donk, E. (eds) Shallow Lakes in a Changing World. Developments in Hydrobiology, vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6399-2_19

Download citation

Publish with us

Policies and ethics