Sediment diatom assemblages and composition of pore-water dissolved organic matter reflect recent eutrophication history of lake peipsi (Estonia/Russia)

  • Atko Heinsalu
  • Tiiu Alliksaar
  • Aina Leeben
  • Tiina Nõges
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 196)


A paleolimnological approach was used for the assessment of the recent eutrophication history and identification of possible reference conditions in the large, shallow, eutrophic Lake Peipsi. Lake Peipsi is the fourth largest lake by area, and the largest transboundary lake in Europe, being shared between Estonia and Russia. Lake Peipsi has been anthropogenically impacted over a longer time-scale than that covered by instrumental limnological monitoring. The 210Pb record and down-core distribution of fly-ash particles in the 40-cm core from the middle part of the lake suggest 130 years of sediment accumulation. Diatom assemblages indicate alkaline mesotrophic conditions and a well-illu-minated water column, sediment pore-water fluorescence index values suggest low autochthonous productivity and a stable aquatic ecosystem similar to natural reference conditions during the second half of 19th and early 20th century. Nearsynchronous stratigraphie changes including the expansion of the eutrophic planktonic diatom Stephanodiscus parvus, the appearance of new species associated with eutrophic lakes and the decrease in the relative abundance of littoral diatoms, together with changes in the fluorescence properties of sediment pore-water dissolved organic matter, imply increased nutrient availability, enlarged phytoplankton crops, reduced watercolumn transparency and the onset of humaninduced disturbances in the lake since the mid-20th century. The most conspicuous expansion of eutrophic planktonic diatoms and maximum concentration of siliceous microfossils occur simultaneously with changes in the fluorescence indexes of pore-water dissolved organic matter, indicating a pronounced increase in the contribution of autochthonous organic matter to the lake sediment. This implies that nutrient loading and anthropogenic impact was at a maximum during the 1970s and 1980s. Sedimentary diatom flora may reflect a reduction of phosphorus loading since the 1990s. However, the absolute abundance of planktonic diatoms and sediment pore-water fluorescence index values vary greatly implying that the lake ecosystem is still rather unstable.


Paleolimnology Sediment Diatoms Pore-water dissolved organic matter Lake Peipsi Estonia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alliksaar, T., 2000. Spatial and temporal variability of the distribution of spherical fly-ash particles in sediments in Estonia. Tallinn Pedagogical University, Dissertations on Natural Sciences 4: 1–44.Google Scholar
  2. Appleby, P. G. & F. Oldfield, 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.CrossRefGoogle Scholar
  3. Appleby, P. G., P. J. Nolan, D. W. Gifford, M. J. Godfrey, F. Oldfield, N. J. Anderson & R. W. Battarbee, 1986. 210Pb dating by low background gamma counting. Hydrobiologia 141: 21–27.CrossRefGoogle Scholar
  4. Battarbee, R., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Vol. 3: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, 155–202.Google Scholar
  5. Bradbury, J. P., S. M. Colman & R. L. Reynolds, 2004. The history of recent limnological changes and human impact on Upper Klamath Lake, Oregon. Journal of Paleolimnology 31: 151–165.CrossRefGoogle Scholar
  6. Bradshaw, E. G. & N. J. Anderson, 2001. Validation of a diatom-phosphorus calibration set for Sweden. Freshwater Biology 46: 1035–1048.CrossRefGoogle Scholar
  7. Chen, J., E. J. LeBoeuf, S. Dai & B. Gu, 2003. Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 50: 639–647.PubMedCrossRefGoogle Scholar
  8. Coble, P. G., 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51: 325–346.CrossRefGoogle Scholar
  9. Coble, P. G., S. A. Green, N. V. Blough & R. B. Gagosian, 1990. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348: 432–434.CrossRefGoogle Scholar
  10. Davydova, N. N., 1985. Diatoms as Indicators of Holocene Lake Environments. Nauka, Leningrad. (in Russian with English summary).Google Scholar
  11. Davydova, N., 1999. Diatoms. In Miidel, A. & A. Raukas (eds), Lake Peipsi. Geology. Sulemees Publishers, Tallinn, 80–86.Google Scholar
  12. Directive 2000/60/EC, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal L 327: 1–72.Google Scholar
  13. Green, S. A., F. M. M. Morel & N. V. Bluogh, 1992. Investigation of the electrostatic properties of humic substances by fluorescence quenching. Environmental Science & Technology 26: 294–302.CrossRefGoogle Scholar
  14. Hákansson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin.Google Scholar
  15. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  16. Interlandi, S. J., S. S. Kilham & E. C. Theriot, 1999. Responses of phytoplankton to varied resource availability in large lakes of the Greater Yellowstone Ecosystem. Limnology and Oceanography 44: 668–682.Google Scholar
  17. Jaani,A., 2001. Hydrological regime and water balance. In Nõges, T. (ed.), Lake Peipsi. Hydrology, Meteorology, Hydrochemistry. Sulemees Publishers, Tallinn: 38–53.Google Scholar
  18. Kaland, P. E. & B. Stabell, 1981. Methods for absolute diatom frequency analysis and combined diatom and pollen analysis in sediments. Nordic Journal of Botany 1: 697–700.CrossRefGoogle Scholar
  19. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Vol. 2(1-4). Gustav Fischer Verlag, Stuttgart.Google Scholar
  20. Kukkonen, M. & H. Simola, 1999. Stratigraphy of diatoms in two 210Pb-dated deep-water cores from Lake Ladoga: evidence of environmental change in the largest lake of Europe. In Mayama, S., M. Idei & I. Koizumi (eds), Proceedings of the 14th International Diatom Symposium, Toyko, Japan, September 2–8, 1996. Koeltz Scientific Books, Koenigstein, 427–435.Google Scholar
  21. Leeben, A., A. Heinsalu, T. Alliksaar & L. Saarse, 2005. A high-resolution spectroscopic study of pore-water dissolved organic matter in annually laminated lake sediments: a new tool for reconstructing eutrophication history. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 29: 457–460.Google Scholar
  22. McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe & D. T. Andersen, 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.CrossRefGoogle Scholar
  23. Meriläinen, J. J., J. Hynynen, A. Palomäki, H. Veijola, K. Mäntykoski, K. Granberg & K. Lehtinen, 2001. Pulp and paper mill pollution and subsequent ecosystem recovery of a large boreal lake in Finland: a palaeolimnological analysis. Journal of Paleolimnology 26: 11–35.CrossRefGoogle Scholar
  24. Nõges, T. (ed.) 2001. Lake Peipsi. Hydrology, Meteorology, Hydrochemistry. Sulemees Publishers, Tallinn.Google Scholar
  25. Nõges, T., I. Tõnno, R. Laugaste, E. Loigu & B. Skakalski, 2004. The impact of changes in nutrient loading on cyanobacterial dominance in Lake Peipsi (Estonia/ Russia). Archiv für Hydrobiologie 160: 261–279.CrossRefGoogle Scholar
  26. Nõges, T., A. Järvet, A. Kisand, R. Laugaste, E. Loigu & P. Nõges, 2007. Reaction of large and shallow lakes Peipsi and Vortsjärv to the changes of nutrient loading. Hydrobiologia 584: 253–264.CrossRefGoogle Scholar
  27. Nõges, P. & T. Nõges, 2006. Indicators and criteria to assess ecological status of the large shallow temperate polymictic lakes Peipsi (Estonia/Russia) and Võrtsjärv (Estonia). Boreal Environment Research 11: 67–80.Google Scholar
  28. Parlanti, E., B. Morin & L. Vacher, 2002. Combined 3D-spectrofluorometry, high performance liquid chromatography and capillary electrophoresis for the characterization of dissolved organic matter in natural waters. Organic Geochemistry 33: 221–236.CrossRefGoogle Scholar
  29. Pihu, E. & J. Haberman (eds), 2001. Lake Peipsi. Flora and Fauna. Sulemees Publishers, Tallinn.Google Scholar
  30. Renberg, I. & M. Wik, 1985. Soot particle counting in recent lake sediments: an indirect dating method. Ecological Bulletins 37: 53–57.Google Scholar
  31. Rose, N. L., 1990. A method for the selective removal of inorganic ash particles from lake sediments. Journal of Paleolimnology 4: 61–67.CrossRefGoogle Scholar
  32. Sandman, O., J. Meriläinen, H. Simola, J. Hynynen, J. Lahtinen, V. Marttila & P. Reinikainen, 2000. Shortcore paleolimnological investigation of Lake Pihlajavesi in the Saimaa Lake complex, eastern Finland: assessment of habitat quality of an endemic and endangered seal population. Journal of Paleolimnology 24: 317–329.CrossRefGoogle Scholar
  33. Sierra, M. M. D., O. F. X. Donard, D. H. Etcheber, E. J. Soriano-Sierra & M. Ewald, 2001. Fluorescence and DOC contents of pore waters from coastal and deepsea sediments in the Gulf of Biscay. Organic Geochemistry 32: 1319–1328.CrossRefGoogle Scholar
  34. Stoermer, E. F., R. G. Kreis Jr. & L. Sicko-Goad, 1981. A systematic, quantitative, and ecological comparison of Melosira islandica O. Müll, with M. granulata (Ehr.) Ralfs from the Laurentian Great Lakes. Journal of Great Lakes Research 7: 345–356.CrossRefGoogle Scholar
  35. Traganza, E. D, 1969. Fluorescence excitation and emission spectra of dissolved organic matter in sea water. Bulletin of Marine Science 19: 897–904.Google Scholar
  36. Wolfe, A. P., S. S. Kaushal, I. R. Fulton & D. M. McKnight, 2002. Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment. Environmental Science & Technology 36: 3217–3223.CrossRefGoogle Scholar
  37. Wright, H. E. Jr., 1980. Cores of soft lake sediments. Boreas 9: 107–114.CrossRefGoogle Scholar
  38. Yamashita, Y. & E. Tanoue, 2003. Chemical characterization of protein-like fluorophores in DOM relation to aromatic amino acids. Marine Chemistry 82: 255–271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Atko Heinsalu
    • 1
  • Tiiu Alliksaar
    • 1
  • Aina Leeben
    • 2
  • Tiina Nõges
    • 3
  1. 1.Institute of GeologyTallinn University of TechnologyTallinnEstonia
  2. 2.Marine Systems InstituteTallinn University of TechnologyTallinnEstonia
  3. 3.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian Agricultural UniversityTartu CountyEstonia

Personalised recommendations