Skip to main content

Delineation of the Indo-Malayan Centre of Maximum Marine Biodiversity: The Coral Triangle

  • Chapter
Biogeography, Time, and Place: Distributions, Barriers, and Islands

Part of the book series: Topics In Geobiology ((TGBI,volume 29))

The ranges of many tropical marine species overlap in a centre of maximum marine biodiversity, which is located in the Indo-Malayan region. Because this centre includes Malaysia, the Philippines, Indonesia, and Papua New Guinea, it has been named the East Indies Triangle. Due to its dependence on the presence of coral reefs, it has recently been referred to as the Coral Triangle. Because these reefs are severely threatened by human activities, large-scale nature conservation efforts involve the establishment of a network of Marine Protected Areas (MPAs), for which it is important to know the position of this diversity hotspot. Although it is recognized where this centre is located approximately, it is unclear where its exact boundaries are. Only in a limited number of biogeographical studies, ranges and diversity centres of Indo-West Pacific (IWP) taxa have been presented. In this regard, tropical corals, marine fishes, and molluscs have received most attention. However, just for reef corals alone several different diversity centres have been proposed. The boundaries of the centre are important for reconstructing the processes that were responsible for its present shape. They may relate to the area’s climatic and geological past or to the dispersal of larvae by currents in combination with ecological constraints that may prevent their settlement. Especially, in brooding organisms, without larvae or other propagules performing long-distance dispersal, isolation mechanisms may have been important for speciation and species diversity. Information on sea-level fluctuation and the past position of coastlines and data on molecular variation between and within species may help to support models that explain the present position of the centre of marine biodiversity. A detailed biogeographical study of the Fungiidae, a family of corals that disperse through larvae, is used to present a model for a diversity centre and the processes that may have caused its present position. For each species, presence-absence data were obtained from many areas in order to plot their distribution patterns. Since several species do not occur on Sunda shelf reefs, the western part of this diversity centre may have been moulded along the Sunda shelf margin since the end of the LGM (17.000–18.000 BP). Species diversity appears to be distributed unevenly among areas within this centre, which depends on habitat heterogeneity, such as cross-shelf gradients in salinity and turbidity. Eventually, the distributions of several model taxa need to be compared in a sufficiently high number of areas in order to find a more common delineation of the Coral Triangle. Many corals are widespread and have a long fossil record. Moreover, coral reefs have not always been located in their present positions. This makes it complex to find which processes have caused a present diversity maximum. Since most species are concentrated in the eastern part of the Indo-Malayan archipelago and part of the West Pacific, this may be the area where most of the youngest species have originated, but sea-level fluctuations probably have been responsible for excluding large continental shelf seas from the Coral Triangle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott, R.T., 1960, The genus Strombus in the Indo-Pacific, Indo Pacific Mollusca 1: 33–146.

    Google Scholar 

  • Ablan, M.C.A., McManus, J.W., Chen, C.A., Shao, K.T., Bell, J., Cabanban, A.S., Tuan, V.S., and Arthana, I.W., 2002, Meso-scale transboundary units for the management of coral reefs in the South China Sea area, Naga Worldfish Center Quarterly 25: 4–9.

    Google Scholar 

  • Achituv Y. and Hoeksema, B.W., 2003, Cantellius cardenae spec. nov. (Cirripedia: Pyrgomatinae) from Acropora (Isopora) brueggemanni (Brook, 1893) (Anthozoa: Acroporidae), a case of host specificity in a generalist genus, Zoologische Mededelingen Leiden 77: 1–8.

    Google Scholar 

  • Adey, W.H., 1978, Coral reef morphogenesis: a multidimensional model, Science 202: 831–837.

    PubMed  Google Scholar 

  • Adey, W.H., 2000, Coral reef ecosystems and human health: biodiversity counts! Ecosystem Health 6: 227–236.

    Google Scholar 

  • Adey, W.H., McConnaughey, T.A., Small, A.M., and Spoon, D.M., 2000, Coral reefs: endangered biodiverse, genetic resources, in: Sheppard, C.R.C. (ed.), Seas at the Millennium: An Environmental Evaluation, Volume III, Global Issues and Processes, Elsevier, Amsterdam, pp. 33–42.

    Google Scholar 

  • Adey, W.H. and Steneck, R.S., 2001, Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae, Journal of Phycology 37: 677–698.

    Google Scholar 

  • Alcala, C. and Russ, G.R, 2002, Role of socioeconomic factors in coral reef protection and management, Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 1: 29–32.

    Google Scholar 

  • Allen, G.R., 2002, Indo-Pacific coral-reef fishes as indicators of conservation hotspots, Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 2: 921–926.

    Google Scholar 

  • Allen, G.R., 2003, Reef fishes of Milne Bay Province, Papua New Guinea, in: Allen, G.R., Kinch, J.P., McKenna, S.A., and Seeto, P. (eds), A Rapid Marine Biodiversity Assessment of Milne Bay Province, Papua New Guinea–Survey II (2000). RAP Bulletin of Biological Assessment 29, Conservation International, Washington, DC pp. 46–55.

    Google Scholar 

  • Allen, G.R. and McKenna, S.A., 2001, A Marine Rapid Assessment of the Togean and Banggai Islands, Sulawesi, Indonesia. RAP Bulletin of Biological Assessment 20, Conservation International, Washington, DC.

    Google Scholar 

  • Andersen, N.M., 1991, Cladistic biogeography of marine water striders (Insecta, Hemiptera) in the Indo-Pacific, Australian Systematic Botany 4: 151–163.

    Google Scholar 

  • Andersen, N.M., 1999, The evolution of marine insects: phylogenetic, ecological and geographical aspects of species diversity in marine water striders, Ecography 22: 98–111.

    Google Scholar 

  • Andersen, N.M., Cheng, L., Damgaard, J., and Sperling, F.A.H., 2000, Mitochondrial DNA variation and phylogeography of oceanic insects (Hemiptera: Gerridae: Halobates spp.), Marine Biology 136: 421–430.

    Google Scholar 

  • Angel, M.V., 1993, Biodiversity of the pelagic ocean, Conservation Biology 7: 760–772.

    Google Scholar 

  • Angel, M.V., 1997, Pelagic biodiversity, in: Ormond, R.F.G., Gage, J.D., and Angel, M.V. (eds), Marine Biodiversity: Patterns and Processes, Cambridge University Press, Cambridge, UK, pp. 35–68.

    Google Scholar 

  • Backus, R.H., 1986, Biogeographic boundaries in the open ocean, UNESCO Technical Papers in Marine Science 49: 9–13.

    Google Scholar 

  • Barber, P.H. and Bellwood, D.R., 2005, Biodiversity hotspots: evolutionary origins of biodiversity in wrasses (Halichoeres: Labridae) in the Indo-Pacific and new world tropics, Molecular Phylogenetics and Evolution 35: 235–253.

    PubMed  Google Scholar 

  • Barber, P.H., Palumbi, S.R., Erdmann, M.V., and Moosa, M.K., 2000, A marine Wallace’s line? Nature 406: 392–693.

    Google Scholar 

  • Barber, P.H., Palumbi, S.R., Erdmann, M.V., and Moosa, M.K., 2002, Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences, Molecular Ecology 11: 659–674.

    CAS  PubMed  Google Scholar 

  • Bard, E., Hamelin, B., Arnold, M., Montaggioni, L.F., Cabioch, G., Faure, G., and Rougerie, F., 1996, Deglacial sea level record from Tahiti corals and the timing of global meltwater discharge, Nature 382: 241–244.

    CAS  Google Scholar 

  • Becking, L.E., Cleary D.F.R., Voogd, N.J. de, Renema, W., Beer, M. de, Soest, R.W.M. van, and Hoeksema, B.W., 2006, Beta diversity of tropical marine benthic assemblages in the Spermonde Archipelago, Indonesia, Marine Ecology PSZNI 27: 76–88.

    Google Scholar 

  • Beer, M. de, 1990a, A marine biological study on the cross-shelf distribution patterns of regular sea urchins (Echinodermata: Echinodea) in the Spermonde Archipelago, SW Sulawesi, (Indonesia), Netherlands Journal of Zoology 40: 544.

    Google Scholar 

  • Beer, M. de, 1990b, Distribution patterns of regular sea urchins (Echinodermata: Echinodea) across the Spermonde Shelf, SW Sulawesi, (Indonesia), in: Ridder, C. de, Dubois, P., Lahaye, M.C., and Jangoux, M. (eds), Echinoderm Research, Balkema Publishers, Rotterdam, pp. 165–169.

    Google Scholar 

  • Beger, M., Jones, G.P., and Munday, P.L., 2003, Conservation of coral reef biodiversity: a comparison of reserve selection procedures for corals and fishes, Biological Conservation 111: 53–62.

    Google Scholar 

  • Belasky, P., 1992, Assessment of sampling bias in biogeography by means of a probabilistic estimate of taxonomic diversity: application to modern Indo-Pacific reef corals, Palaeogeography, Palaeoclimatology, Palaeoecology 99: 243–270.

    Google Scholar 

  • Belasky, P., 1996, Biogeography of Indo-Pacific larger foraminifera and scleractinian corals: a probabilistic approach to estimating taxonomic diversity, faunal similarity, and sampling bias, Palaeogeography, Palaeoclimatology, Palaeoecology 122: 119–141.

    Google Scholar 

  • Bellwood, D.R., 1997, Reef fish biogeography: habitat associations, fossils and phylogenies, Proceedings Eighth International Coral Reef Symposium, Panama 1: 379–384.

    Google Scholar 

  • Bellwood, D.R. and Hughes, T.P., 2001, Regional-scale assembly rules and biodiversity of coral reefs, Science 292: 1532–1534.

    CAS  PubMed  Google Scholar 

  • Bellwood, D.R., Hughes, T.P., Connolly, S.R., and Tanner, J., 2005, Environmental and geometric constraints on Indo-Pacific coral reef biodiversity, Ecology Letters 8: 643–651.

    Google Scholar 

  • Bellwood, D.R., Herwerden, L. van, and Konow, N., 2004, Evolution and biogeography of angelfishes, Molecular Phylogenetics and Evolution 33: 140–155.

    CAS  PubMed  Google Scholar 

  • Bellwood, D.R. and Wainwright, P.C., 2002, The history and biogeography of fishes on coral reefs, in: Sale, P.F. (ed.), Coral Reef Fishes. Dynamics and Diversity in a Complex Ecosystem, Academic Press, NY, pp. 5–32.

    Google Scholar 

  • Benzie, J.A.H., 1998, Genetic structure of marine organisms and Southeast Asian biogeography, in: Hall, R. and Holloway, D. (eds), Biogeography and Geological Evolution of Southeast Asia, Backhuys Publishers, Leiden pp. 197–209.

    Google Scholar 

  • Benzie, J.A.H., 1999a, Genetic structure of coral reef organisms: ghosts of dispersal past, American Zoologist 39: 131–145.

    Google Scholar 

  • Benzie, J.A.H., 1999b, Major genetic differences between Crown-of-Thorns starfish (Acanthaster planci) populations in the Indian and Pacific oceans, Evolution 53: 1782–1795.

    CAS  Google Scholar 

  • Benzie, J.A.H., 2000, The detection of spatial variation in widespread marine species: methods and bias in the analysis of population structure in the crown of thorns starfish (Echinodermata: Asteroidea), Hydrobiologia 420: 1–14.

    Google Scholar 

  • Benzie, J.A.H., 2001, Ocean structure, permeable barriers, rare events and patterns of genetic diversity in the Indo-Pacific, American Zoologist 41: 1389–1390.

    Google Scholar 

  • Benzie, J.A.H., Smith, C., and Sugama, K., 2003, Mitochondrial DNA reveals genetic differentiation between Australian and Indonesian pearl oyster Pinctada maxima (Jameson 1901) populations, Journal of Shellfish Research 22: 781–787.

    Google Scholar 

  • Benzie, J.A.H. and Williams, S.T., 1995, Gene flow among giant clam (Tridacna gigas) populations in Pacific does not parallel ocean circulation, Marine Biology 123: 781–787.

    Google Scholar 

  • Benzie, J.A.H. and Williams, S.T., 1997, Genetic structure of Giant Clam (Tridacna maxima) populations in the West Pacific is not consistent with dispersal by present-day ocean currents, Evolution 51: 768–783.

    Google Scholar 

  • Best, M.B., Hoeksema, B.W., Moka, W., Moll, H., Suharsono and Sutarna, I.N., 1989, Recent scleractinian coral species collected during the Snellius-II Expedition in eastern Indonesia, Netherlands Journal of Sea Research 23: 107–115.

    Google Scholar 

  • Blanchon, P. and Blakeway, D., 2003, Are catch-up reefs an artefact of coring? Sedimentology 50: 1271–1282.

    Google Scholar 

  • Bleakley, C. and Wells, S. (eds), 1995, Marine region 13: East Asian Seas, in: Kelleher, G.G., Bleakley, C., and Wells, S (eds), A Global Representative System of Marine Protected Areas 3 Great Barrier Reef Park Authority, Canberra, The World Bank, Washington, DC, The World Conservation Union (IUCN), Gland and Cambridge, pp. 107–140.

    Google Scholar 

  • Blum, S.D., 1989, Biogeography of the Chaetodontidae: an analysis of allopatry among closely related species, Environmental Biology of Fishes 25: 9–31.

    Google Scholar 

  • Bolton, J.J., 1994, Global seaweed diversity: patterns and anomalies, Botanica Marina 37: 241–245.

    Google Scholar 

  • Boschma, H., 1948, The species problem in Millepora, Zoologische Verhandelingen Leiden 1: 1–115.

    Google Scholar 

  • Boschma, H., 1957, List of the described species of the Order Stylasterina, Zoologische Verhandelingen Leiden 33: 1–72.

    Google Scholar 

  • Bouchet, P., 1997, Inventorying the molluscan diversity of the world: what is our rate of progress? Veliger 40: 1–11.

    Google Scholar 

  • Bouchet, P., Lozouet, P., Maestrati, P., and Heros, V., 2002, Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site, Biological Journal of the Linnean Society 75: 421–436.

    Google Scholar 

  • Bowen, B.W., Bass, A.L., Garcia-Rodriguez, A.I., Rocha, L.A., and Robertson, D.R., 2001, Phylogeography of the trumpetfish (Aulostomus spp.): a ring species complex on a global scale, Evolution 55: 1029–1039.

    Google Scholar 

  • Boxshall, G.A., 1981, Community structure ands resource partitioning–the plankton, in: Forey, P.L. (ed.), The Evolving Biosphere. Chance Change and Challenge, British Museum (Natural History), London, and Cambridge University Press, Cambridge, UK, pp. 143–156.

    Google Scholar 

  • Briggs, J.C., 1973, Operation of zoogeographic barriers, Systematic Zoology 23: 248–256.

    Google Scholar 

  • Briggs, J.C., 1974, Marine Biogeography, McGraw-Hill, New York.

    Google Scholar 

  • Briggs, J.C., 1981, Do centers of origin have a center, Paleobiology 7: 305–307.

    Google Scholar 

  • Briggs, J.C., 1987a, Biogeography and Plate Tectonics, Elsevier, Amsterdam.

    Google Scholar 

  • Briggs, J.C., 1987b, Antitropical distribution and evolution in the Indo-West Pacific Ocean, Systematic Zoology 36: 237–247.

    CAS  PubMed  Google Scholar 

  • Briggs, J.C., 1992, The marine East Indies: centre of origin? Global Ecology and Biogeography Letters 2: 149–156.

    Google Scholar 

  • Briggs, J.C., 1994, Species diversity: land and sea compared, Systematic Biology 43: 30–135.

    Google Scholar 

  • Briggs, J.C., 1995, Global Biogeography, Elsevier, Amsterdam.

    Google Scholar 

  • Briggs, J.C., 1996. Tropical diversity and conservation, Conservation Biology 10: 713–718.

    Google Scholar 

  • Briggs, J.C., 1999a, Coincident biogeographic patterns: Indo-West Pacific Ocean, Evolution 53: 326–335.

    Google Scholar 

  • Briggs, J.C., 1999b, Extinction and replacement in the Indo-West Pacific Ocean, Journal of Biogeography 26: 777–783.

    Google Scholar 

  • Briggs, J.C., 1999c, Modes of speciation: marine Indo-West Pacific, Bulletin of Marine Science 65: 645–656.

    Google Scholar 

  • Briggs, J.C., 2000, Centrifugal speciation and centres of origin, Journal of Biogeography 27: 1183–1188.

    Google Scholar 

  • Briggs, J.C., 2003, Marine centres of origin as evolutionary engines, Journal of Biogeography 30: 1–18.

    Google Scholar 

  • Briggs, J.C., 2004a, Older species: a rejuvenation on coral reefs? Journal of Biogeography 31: 525–530.

    Google Scholar 

  • Briggs, J.C., 2004b, A marine center of origin: reality and conservation? in: Lomolino M.V. and Heaney, L.R. (eds), Frontiers of Biogeography. New Directions in the Geography of Nature, Sinauer Associates, Sunderland, UK, pp. 255–269.

    Google Scholar 

  • Briggs, J.C., 2005a, The marine East Indies: diversity and speciation, Journal of Biogeography 32: 1517–1522.

    Google Scholar 

  • Briggs, J.C., 2005b, Coral reefs: conserving the evolutionary sources, Biological Conservation 126: 297–305.

    Google Scholar 

  • Briggs, J.C., 2006, Proximate sources of marine diversity, Journal of Biogeography 33: 1–10.

    Google Scholar 

  • Brothers, E.B. and Thresher, R.E., 1985, Pelagic duration, dispersal and the distribution of Indo-Pacifc coral reef fishes, in: Reaka, M.L. (ed.), The Ecology of Coral Reef Symposia Series for Undersea Research, NOAA’s Undersea Research Program 3 (1): 53–69.

    Google Scholar 

  • Brown, J.H., 1988, Species diversity, in: Meyers, A.A. and Giller, P.S. (eds), Analytical Biogeography. An Integrated Approach to the Study of Animal and Plant Distributions, Chapman & Hall, London, pp. 57–89.

    Google Scholar 

  • Burke, L., Selig, E., and Spalding, M., 2002, Reefs at Risk in Southeast Asia, World Resources Institute, Washington, DC.

    Google Scholar 

  • Cabioch, G., Camoin, C.F., and Montaggioni, L.F., 1999a, Postglacial growth history of a French Polynesian barrier reef tract, Tahiti, Central Pacific, Sedimentology 46: 985–1000.

    Google Scholar 

  • Cabioch, G., Montaggioni, L.F., and Faure, G., 1995, Holocene initiation and development of New Caledonian fringing reefs, South-West Pacific, Coral Reefs 14: 131–140.

    Google Scholar 

  • Cabioch, G., Montaggioni, L.F., Faure, G., and Ribaud-Laurenti, A., 1999b, Reef coralgal assemblages as recorders of paleobathymetry and sea level changes in the Indo-Pacific province, Quaternary Science Reviews 18: 1681–1695.

    Google Scholar 

  • Cairns, S.D., 1992, Worldwide distribution of of the Stylasteridae (Cnidaria: Hydrozoa), Scientia Marina 56: 125–130.

    Google Scholar 

  • Cairns, S.D., in press, Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals, Bulletin of Marine Science 80.

    Google Scholar 

  • Cairns, S.D. and Hoeksema, B.W., 1997, Distichopora vervoorti, a new shallow-water stylasterid coral (Cnidaria : Hydrozoa : Stylasteridae) from Bali, Indonesia, Zoologische Verhandelingen Leiden 323: 311–318.

    Google Scholar 

  • Cairns, S.D., Hoeksema, B.W., and Land, J. van der, 1999, List of extant stony corals, Atoll Research Bulletin 459: 13–46.

    Google Scholar 

  • Cairns, S.D. and Zibrowius, H., 1997, Cnidaria Anthozoa: azooxanthellate Scleractinia from the Philippine and Indonesian regions, Mémoirs du Muséum National d’Histoire Naturelle Paris 172: 27–243.

    Google Scholar 

  • Carlton, J.T., Geller, J.B., Reaka-Kudla, M.L., and Norse, E.A., 1999, Historical extinctions in the sea, Annual Review of Ecology and Systematics 30: 515–538.

    Google Scholar 

  • Carpenter, K.E. and Springer, V.G., 2005, The center of the center of marine shorefish biodiversity: the Philippine Islands, Environmental Biology of Fishes 72: 467–480.

    Google Scholar 

  • Cesar, H.S.J. (ed.), 2000, Collected Essays on the Economics of Coral Reefs, CORDIO, Kalmar, Sweden.

    Google Scholar 

  • Cesar, H., Burke, L., and Pet-Soede, L., 2003, The Economics of Worldwide Coral Reef Degradation, Cesar Environmental Economics Consulting (CEEC), Arnhem, The Netherlands.

    Google Scholar 

  • Chappell, J., 1983, Sea level changes and coral reef growth, in: Barnes, D.J. (ed.), Perspectives on Coral Reefs, Brian Clouston, Manuha, Australia, pp. 46–55.

    Google Scholar 

  • Chappell, J. and Thom, B.G., 1977, Sea levels and coasts, in: Allen, J., Golson, J., and Jones, R. (eds), Sunda and Sahul: Prehistoric Studies in Southeast Asia, Melanesia and Australia, Academic Press, London, pp. 275–291.

    Google Scholar 

  • Chen, C.A., 1999, Analysis of scleractinian distribution in Taiwan indicating a pattern congruent with sea surface temperatures and currents: examples from Acropora and Faviidae corals, Zoological Studies 38: 119–129.

    Google Scholar 

  • Chenoweth, S.F. and Hughes, J.M., 2003, Oceanic interchange and nonequilibrium population structure in the estuarine dependent Indo-Pacific tasselfish, Polynemus sheridani, Molecular Ecology 12: 2387–2397.

    Google Scholar 

  • Chenoweth, S.F., Hughes, J.M., Keenan, C.P., and Lavery, S., 1998a, Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian baramundi), Heredity 80: 187–197.

    Google Scholar 

  • Chenoweth, S.F., Hughes, J.M., Keenan, C.P., and Lavery, S., 1998b, When oceans meet: a teleost shows secondary intergradation at an Indian-Pacific interface, Proceedings of the Royal Society B 265: 415–420.

    Google Scholar 

  • Clarke, A. and Crame, J.A, 1997, Diversity, latitude and time: patterns in the shallow sea, in: Ormond, R.F.G., Gage, J.D., and Angel, M.V. (eds), Marine Biodiversity: Patterns and Processes, Cambridge University Press, Cambridge, UK, pp. 122–147.

    Google Scholar 

  • Cleary D.F.R., Becking, L.E., Voogd, N.J. de, Renema, W., Beer, M. de, Soest, R.W.M. van, and Hoeksema, B.W., 2005, Variation in the diversity and composition of benthic taxa as a function of distance offshore, depth and exposure in the Spermonde Archipelago, Indonesia, Estuarine and Coastal Shelf Science 65: 557–570.

    Google Scholar 

  • Cleary, D.F.R, Suharsono, and Hoeksema, B.W., 2006, Coral diversity across a disturbance gradient in the Pulau Seribu reef complex off Jakarta, Indonesia, Biodiversity and Conservation. 15: 3653–3676.

    Google Scholar 

  • Collette, B.B., 2005, Is the east-west division of haplotypes of the three-spot seahorse along Wallace’s Line novel among marine organisms? Journal of Biogeography 32: 1286.

    Google Scholar 

  • Collete, B.B. and Russo, J.L., 1984, Morphology, systematics, and biology of the Spanish mackerels (Scomberomorus, Scombridae), Fishery Bulletin 82: 545–692.

    Google Scholar 

  • Connolly, S.R., Bellwood, D.R., and Hughes, T.P., 2003, Indo-Pacific biodiversity of coral reefs: deviation from a mid-domain model, Ecology 84: 2178–2190.

    Google Scholar 

  • Connolly, S.R., Hughes, T.P., Bellwood, D.R., and Karlson, R.H., 2005, Community structure of corals and reef fishes at multiple scales, Science 309: 1363–1365.

    CAS  PubMed  Google Scholar 

  • Cornell, H.V. and Karlson, R.H., 1996, Species richness of reef-building corals determined by local and regional processes, Journal of Animal Ecology 65: 233–241.

    Google Scholar 

  • Coudray, J., and Montaggioni, L., 1982, Coraux et récifs coralliens de la province indo-pacifique: répartition géographique et altitudinale en relation avec la tectonique globale, Bulletin de la Society Géoloqique de France 7: 981–993.

    Google Scholar 

  • Crame, J.A., 2000, Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of recent bivalve faunas, Paleobiology 26: 188–214.

    Google Scholar 

  • Cresswell, G., 1986, The role of the Leeuwin current in the life cycles of several marine creatures, UNESCO Technical Papers in Marine Science 49: 60–64.

    Google Scholar 

  • Cresswell, G.R. and Golding, T.J., 1980, Observations of a south south-flowing current in the southeastern Indian Ocean, Deep-sea Research 27A: 449–466.

    Google Scholar 

  • Dargent, O. and Coppejans, E., 1998, The species diversity of the genus Halimeda (Caulerpales, Bryopsidophyceae) in Indonesia and Papua New Guinea, Biologisch Jaarboek Dodonaea Gent 65: 119–120.

    Google Scholar 

  • Dawes, C.J., 1981, Marine Botany, Wiley, New York.

    Google Scholar 

  • Dawson, M.N. and Hamner, W.M., 2005, Rapid evolutionary radiation of marine zooplankton in peripheral environments, Proceedings of the National Academy of Sciences USA 102: 9235–9240.

    CAS  Google Scholar 

  • Dawson, M.N. and Jacobs, D.K., 2001, Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa), Biological Bulletin 200: 92–96.

    CAS  PubMed  Google Scholar 

  • Dawson, M.N. and Martin, L.E., 2001, Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics, Hydrobiologia 451: 259–273.

    Google Scholar 

  • Didderen, K., Fransen, C.H.J.M., and Voogd, N.J. de, 2006, Observations of sponge-dwelling colonies of Synalpheus (Decapoda, Alpheidae) of Sulawesi, Indonesia, Crustaceana 79: 961–975.

    Google Scholar 

  • Dinesen, Z.D., 1983, Patterns in the distribution of soft corals across the central Great Barrier Reef, Coral Reefs 1: 229–236.

    Google Scholar 

  • Donaldson, T.J., 1986, Distribution and species richness of Indo-West Pacific Cirrhitidae: support for Woodland’s hypothesis, in: Uyeno, T., Arai, R., Taniuchi, T., and Matsuura, K. (eds), Indo-Pacific Fish Biology. Proceedings of the Second International Conference on Indo-Pacific Fishes, Ichtyological Society of Japan, Tokyo, pp. 623–628.

    Google Scholar 

  • Done, T.J., 1982, Patterns in the distribution of coral communities across the Central Great Barrier Reef, Coral Reefs 1: 95–107.

    Google Scholar 

  • Done, T.J., 1983, The distribution of coral communities on the Great Barrier Reef, Proceedings of the Inaugural Great Barrier Reef Conference, Townsville, 1983, pp. 197–202.

    Google Scholar 

  • Duarte, C.M., 2001, Seagrasses, in: Levin, S.A. (ed.), Encyclopedia of Biodiversity, Vol. 5, Academic Press, San Diego, CA, pp. 255–268.

    Google Scholar 

  • Duda, T.F. and Palumbi, S.R., 1999, Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations, Marine Biology 34: 705–710.

    Google Scholar 

  • Duke, N.C., Benzie, J.A.H., Goodall, J.A., and Ballment, E.R., 1998, Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific, Evolution 52: 1612–1626.

    Google Scholar 

  • Edinger, E. and Browne, D.R., 2000, Continental seas of western Indonesia, in: Sheppard, C.R.C. (ed.), Sea at the Millenium: An Environmental Evaluation, Volume II. Regional Chapters: The Indian Ocean to the Pacific, Elsevier Science, Amsterdam, pp. 381–404.

    Google Scholar 

  • Edinger, E.N., Kolasa, J., and Risk, J.M., 2000, Biogeographic variation in coral species diversity on coral reefs in three regions of Indonesia, Diversity and Distributions 6: 113–127.

    Google Scholar 

  • Ekman, S., 1934, Indo-Westpazifik und Atlanto-Ostpazifik, eine tiergeographische Studie, Zoogeographica 2: 320–374.

    Google Scholar 

  • Ekman, S., 1935, Tiergeographie des Meeres. Akademische Verlagsgesellschaft M.B.H. Leipzig.

    Google Scholar 

  • Ekman, S., 1953, Zoogeography of the Sea, Sidgwick & Jackson, London.

    Google Scholar 

  • Erdmann, M.V., Caldwell, R.L., and Kasim Moosa, M., 1998, Indonesian ‘king of the sea’ discovered, Nature 395: 335–336.

    CAS  Google Scholar 

  • Fabricius, K. and Alderslade, P., 2001, Soft Corals and Sea Fans. A Comprehensive Guide to the Tropical Shallow-Water Genera of the Central-West Pacific, the Indian Ocean and the Red Sea, Australian Institute of Marine Science, Townsville.

    Google Scholar 

  • Fadlallah, Y.H., 1983, Sexual reproduction, development and larval biology in scleractinian corals, Coral Reefs 2: 129–150.

    Google Scholar 

  • Fan, K.L. and Yu, C.Y., 1981, A study of water masses in the seas of southernmost Taiwan, Acta Oceanographica Taiwanica 12: 94–111.

    Google Scholar 

  • Ferrier, S., 2002, Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Systematic Biology 51: 331–363.

    PubMed  Google Scholar 

  • Fleminger, A., 1986, The Pleistocene equatorial barrier between the Indian and Pacific oceans and a likely cause for Wallace’s Line, UNESCO Technical Papers in Marine Science 49: 84–97.

    Google Scholar 

  • Foin, T.C., 1976, Plate tectonics and the biogeography of the Cypraeidae (Mollusca: Gastropoda), Journal of Biogeography 3: 19–34.

    Google Scholar 

  • Fontaubert, A.C. de, Downes, D.R., and Agardy, T.S., 1996, Biodiversity in the Seas: Implementing the Convention of Biological Diversity in Marine and Coastal Habitats, IUCN, Gland and Cambridge.

    Google Scholar 

  • Forbes, E., 1856, Map of the distribution of marine life, in: Johnston, A.K. (ed.), The Physical Atlas of Natural Phenomena (new edition), W. Johnston and A.K. Johnston, London, p. 31.

    Google Scholar 

  • Forey, P., 1998, A home away from home for coelacanths, Nature 395: 319.

    CAS  Google Scholar 

  • Fransen, C.H.J.M., 2002, Taxonomy, phylogeny, historical biogeography, and historical ecology of the genus Pontonia Latreille (Crustacea: Decapoda: Caridea: Palaemonidae), Zoologische Verhandelingen Leiden 336: 1–433.

    Google Scholar 

  • Fransen, C.H.J.M., 2007, The influence of land barriers on the evolution of pontoniine shrimps (Crustacea, Decapoda) living in association with molluscs and solitary ascidians, in Renema, W. (ed.), Biogeography, Time and Place: Distributions, Barriers and Islands, Springer, Dordrecht, pp. 103–116. (Chapter 4 this book).

    Google Scholar 

  • Fraser, R. H. and Currie, D.J., 1996, The species richness-energy hypothesis in a system where historical factors and thought to prevail: coral reefs, American Naturalist 148: 138–159.

    Google Scholar 

  • Garvine, R.W., 1986, The role of brackish plumes in open shelf waters, in: Skreslet, S. (ed.), The Role of Freshwater Outflow in Coastal Marine Ecosystems, Springer, Berlin, pp. 47–65.

    Google Scholar 

  • Gagan, M.K., Hendy E.J., Haberle, S.G., and Hantoro, W.S., 2004, Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation, Quaternary International 118–119: 127–143.

    Google Scholar 

  • Gaston, K.J., 2003, The how and why of biodiversity, Nature 421: 900–901.

    CAS  PubMed  Google Scholar 

  • Gaston, K.J. and Wiliams, P.H., 1993, Mapping the world’s species–the higher taxon approach, Biodiversity Letters 1: 2–8.

    Google Scholar 

  • GBDMS (Committee on Biological Diversity in Marine Systems), 1995, Understanding Marine Biodiversity, National Academy Press, Washington, DC.

    Google Scholar 

  • Geiger, D.L., 2000, Distribution and biogeography of the recent Haliotidae (Gastropoda: Vetigastropoda) world-wide, Bolletino Malacologico 35: 57–120.

    Google Scholar 

  • Geiger, D.L. and Groves, L.T., 1999, Review of fossil abalone (Gastropoda: Vetigastropoda: Haliotidae) with comparison to recent species, Journal of Paleontology 73: 872–885.

    Google Scholar 

  • Gerber, L.R., Botsford, L.W., Hastings, A., Possingham, H.P., Gaines, S.D., Palumbi, S.R., and Andelman, S., 2003, Population models for marine reserve design: a retrospective and prospective synthesis, Ecological Applications 13 (Suppl.): S47–S64.

    Google Scholar 

  • Geyh, M.A., Kudrass, H.R., and Streiff, H., 1979, Sea-level changes in the late Pleistocene and Holocene in the Strait of Malacca, Nature 278: 441–443.

    Google Scholar 

  • Gittenberger, A., 2003, The wentletrap Epitonium hartogi spec. nov. (Gastropoda: Epitoniidae), associated with bubble coral species, Plerogyra spec. (Scleractinia: Euphyllidae), off Indonesia and Thailand, Zoologische Verhandelingen Leiden 345: 139–150.

    Google Scholar 

  • Gittenberger, A., Goud, J., and Gittenberger, E., 2000, Epitonium (Gastropoda: Epitoniidae) associated with mushroom corals (Scleractinia: Fungiidae) from Sulawesi, Indonesia, with the description of four new species, Nautilus 114: 1–13.

    Google Scholar 

  • Gittenberger, A. and Gittenberger, E., 2005, A hitherto unnoticed adaptive radiation: epitoniid species (Gastropoda: Epitoniidae) associated with corals (Scleractinia), Contributions to Zoology 74: 125–203.

    Google Scholar 

  • Glynn, P.W. and Ault, J.S., 2000, A biogeographic analysis and review of the far eastern Pacific coral reef region, Coral Reefs 19: 1–23.

    Google Scholar 

  • Gordon, A.L., 2001, Interoceanic exchange, in: Siedler, G., Church, J., and Gould, J. (eds), Ocean Circulation and Climate, Academic Press, San Diego, CA, pp. 303–314.

    Google Scholar 

  • Gordon, A.L. and Fine. R.A., 1996, Pathways of water between the Pacific and Indian Oceans in the Indonesian seas, Nature 379: 146–149.

    CAS  Google Scholar 

  • Gordon, A.L., Susanto, R.D., and Vranes, K., 2003, Cool Indonesian throughflow as a consequence of restricted surface layer flow, Nature 425: 824–828.

    CAS  PubMed  Google Scholar 

  • Gosliner, T.M., 1993, Biodiversity of tropical opisthobranch gastropod faunas, Proceedings Seventh International Coral Reef Symposium, Guam, 1992, 2: 702–709.

    Google Scholar 

  • Gosliner, T.M., 2002, Biodiversity, endemism, and evolution of opisthobranch gastropods on Indo-Pacific coral reefs, Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 2: 937–940.

    Google Scholar 

  • Gosliner, T.M. and Draheim, R., 1996, Indo-Pacific opisthobranch gastropod biogeography: how do we know what we don’t know, American Malacological Bulletin 12: 37–43.

    Google Scholar 

  • Goud, J. and Hoeksema, B.W., 2001, Pedicularia vanderlandi spec. nov., a symbiotic snail (Caenogastropoda: Ovulidae) on the hydrocoral Distichopora vervoorti Cairns & Hoeksema, 1998 (Hydrozoa: Stylasteridae), from Bali, Indonesia, Zoologische Verhandelingen Leiden 334: 77–97.

    Google Scholar 

  • Gray, J.S., 1997, Marine biodiversity: patterns, threats and conservation needs, Reports and Studies GESAMP 62: 1–24.

    Google Scholar 

  • Grave, S. de, 2001, Biogeography of Indo-Pacific Pontoniinae shrimps (Crustacea, Decapoda): a PAE analysis, Journal of Biogeography 28: 1239–1253.

    Google Scholar 

  • Green, A. and Mous, P.J., 2004, Delineating the Coral Triangle, its ecoregions and functional seascapes. Report on an expert workshop, held at the Southeast Asia Center for Marine Protected Areas, Bali, Indonesia (April 30–May 2, 2003). Version 1.1. The Nature Conservancy, Southeast Asia Center for Marine Protected Areas, Bali, Indonesia.

    Google Scholar 

  • Grigg, R.W. and Epp, D., 1989, Critical depth for the survival of coral islands: effects on the Hawaiian Archipelago, Science 243: 638–641.

    PubMed  Google Scholar 

  • Groombridge, B. and Jenkins, M.D, 2000, Global Biodiversity. Earth’s Living Resources in the 21st Century, World Conservation Press, Cambridge.

    Google Scholar 

  • Groombridge, B. and Jenkins, M.D, 2002, World Atlas of Biodiversity. Earth’s Living Resources in the 21st Century, University of California Press, Berkeley, CA.

    Google Scholar 

  • Hallock, P., 1988, Diversification in algal symbiont-bearing Foraminifera: a response to oligotrophy? Revue de Paléobiologie Vol. Spéc. 2: 789–797.

    Google Scholar 

  • Hartog, C. den, 1970, The sea-grasses of the world, Verhandelingen van de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, Reeks 2, 59: 1–275, pls. 1–31.

    Google Scholar 

  • Hatayama, T., Awaji, T., Akitomo, K., and Imasato, N., 1996, Tidal current in the Indonesian seas and its effect on the transport and mixing processes, Proceedings of the IOC-WESTPAC Third International Science Symposium, Bali, 1994, pp. 636–649.

    Google Scholar 

  • Heads, M., 2005, Towards a panbiogeography of the seas, Biological Journal of the Linnean Society 84: 675–723.

    Google Scholar 

  • Heck, K.L. and McCoy, E.D., 1978, Long-distance dispersal and the reef-building corals of the eastern Pacific, Marine Biology 48: 349–356.

    Google Scholar 

  • Helfman, G.S., Collette, B.B., and Facey, D.E., 1997, The Diversity of Fishes, Blackwell Science, Malden, MA.

    Google Scholar 

  • Hellberg, M., Balch., D.P., and Roy, K., 2001, Climate-driven range expansion and morphological evolution in a marine gastropod, Science 292: 1707–1710.

    Google Scholar 

  • Hellberg, M.E., Burton, R.S., Neigel, J.E., and Palumbi, S.R., 2002, Genetic assessment of connectivity among marine populations, Bulletin of Marine Science 70 (Suppl.): 273–290.

    Google Scholar 

  • Hemminga, M.A. and Duarte, C.M., 2000, Seagrass Ecology, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hesp, P.A., Chang, C.H., Hilton, M., Chou, M.L., and Turner, I.M., 1998, A first tentative Holocene sea-level curve for Singapore, Journal of Coastal Research 14: 308–314.

    Google Scholar 

  • Hewitt, G., 2000, The genetic legacy of the Quaternary ice ages, Nature 405: 907–913.

    CAS  PubMed  Google Scholar 

  • Hoeksema, B.W., 1989, Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae), Zoologische Verhandelingen Leiden 254: 1–295.

    Google Scholar 

  • Hoeksema, B.W., 1990, Systematics and ecology of mushroom corals (Scleractinia: Fungiidae). Ph.D. thesis, Leiden University, Leiden, The Netherlands.

    Google Scholar 

  • Hoeksema, B.W., 1993a, Mushroom corals (Scleractinia: Fungiidae) of Madang Lagoon, northern Papua New Guinea: an anonotated check-list with the description of Cantherellus jebbi spec. nov., Zoologische Mededelingen Leiden 67: 1–19.

    Google Scholar 

  • Hoeksema, B.W., 1993b, The position of northern New Guinea in the center of marine benthic diversity: a reef coral perspective, Proceedings Seventh International Coral Reef Symposium, Guam, 1992, 2: 710–717.

    Google Scholar 

  • Hoeksema, B.W., 1997a, Generic diversity of Scleractinia in Indonesia, in: Tomascik, T., Mah, A.J., Nontji, A., and Moosa M.K. (eds), The Ecology of the Indonesian Seas, Part I, Periplus, Singapore, pp. 308–311.

    Google Scholar 

  • Hoeksema, B.W., 1997b, Diversity of mushroom corals (Scleractinia: Fungiidae in: Tomascik, T., Mah, A.J., Nontji, A., and Moosa M.K. (eds), The Ecology of the Indonesian Seas, Part I, Periplus, Singapore, pp. 311–313.

    Google Scholar 

  • Hoeksema, B.W., 1997c, Conservation problems in coelenterates with emphasis on coral reef communities, in: Hartog, J.C. den, Ofwegen, L.P. van, Spoel, S. van der (eds), Proceedings of the Sixth International Conference on Coelenterate Biology, Noordwijkerhout, 1995, Nationaal Natuurhistorisch Museum, Leiden, The Netherlands, pp. 253–264.

    Google Scholar 

  • Hoeksema, B.W., 2004, Biodiversity and the natural resource management of coral reefs in Southeast Asia, in: Visser, L.E. (ed.), Challenging Coasts. Transdisciplinary Excursions into Integrated Coastal Zone Development, Amsterdam University Press, Amsterdam, pp. 49–71.

    Google Scholar 

  • Hoeksema, B.W. and Achituv, Y., 1993, First Indonesian record of Fungiacava eilatensis Goreau et al., 1968 (Bivalvia: Mytilidae), endosymbiont of Fungia spp. (Scleractinia: Fungiidae), Basteria 57: 131–138.

    Google Scholar 

  • Hoeksema, B.W. and Dai, C.F., 1991, Scleractinia of Taiwan II: family Fungiidae (including a new species), Bulletin of the Institute of Zoology Academia Sinica 30: 203–228.

    Google Scholar 

  • Hoeksema, B.W. and Kleemann, K., 2002, New records of Fungiacava eilatensis Goreau et al., 1968 (Bivalvia, Mytilidae) boring into Indonesian mushroom corals (Scleractinia, Fungiidae), Basteria 66: 25–30.

    Google Scholar 

  • Hoeksema, B.W. and Moka, W., 1989, Species assemblages and phenotypes of mushroom corals (Fungiidae) related to coral reef habitats in the Flores Sea, Netherlands Journal of Sea Research 23: 149–160.

    Google Scholar 

  • Hoeksema, B.W. and Putra, K.S., 2002, The reef coral fauna of Bali in the centre of marine diversity, Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 1: 173–178.

    Google Scholar 

  • Hoeksema, B.W. and Ofwegen, L.P. van (eds), 2004, Indo-Malayan Reef Corals: A Generic Overview, World Biodiversity Database CD-Rom Series, ETI, Amsterdam.

    Google Scholar 

  • Hogarth, P.J., 1999, The Biology of Mangroves, Oxford University Press, Oxford, NY.

    Google Scholar 

  • Hogarth, P.J., 2001, Mangrove ecosystems, in: Levin, S.A. (ed.), Encyclopedia of Biodiversity, Vol. 3, Academic Press, San Diego, CA, pp. 853–870.

    Google Scholar 

  • Houbrick, R.S., 1985, Genus Clypeomorus Jousseaume (Cerithiidae: Prosobranchia), Smithsonian Contributions to Zoology 403: 1–131.

    Google Scholar 

  • Houbrick, R.S., 1992, Monograph of the genus Cerithium Bruguière in the Indo-Pacific (Cerithiidae: Prosobranchia), Smithsonian Contributions to Zoology 510: 1–211.

    Google Scholar 

  • Hubbel, S.P., 1997, A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs, Coral Reefs 16 (Suppl.): S9–S21.

    Google Scholar 

  • Hughes, T.P., Bellwood, D.R., and Connolly, S.R., 2002, Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs, Ecology Letters 5: 775–784.

    Google Scholar 

  • Hutomo, M. and Moosa, M.K., 2005, Indonesian marine and coastal biodiversity: present status, Indian Journal of Marine Science 34: 88–97.

    Google Scholar 

  • Ilahude, A.G. and Gordon, A.L., 1996, Water masses of the Indonesian seas throughflow, Proceedings of the IOC-WESTPAC Third International Science Symposium, Bali, 1994, pp. 572–587.

    Google Scholar 

  • Johannes, R.E., Wiebe, W.J., Crossland, C.J., Rimmer, D.W., and Smith, S.V., 1983, Latitudinal limits to coral reef growth, Marine Ecology Progress Series 11: 105–111.

    Google Scholar 

  • Johnson, R.K., 1986, Polytypy, boundary zones and the place of broadly-distributed species in mesopelagic zoogeography, UNESCO Technical Papers in Marine Science 49: 156–165.

    Google Scholar 

  • Jokiel, P. and Martinelli, F.J., 1992, The vortex model; of coral reef biogeography, Journal of Biogeography 19: 449–458.

    Google Scholar 

  • Karlson, R.H., 1999, Dynamics of Coral Communities, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Karlson, R.H. and Cornell, H.V., 1999, Integration of local and regional perspectives on the species richness of coral assemblages, American Zoologist 39: 104–112.

    Google Scholar 

  • Kay, E.A., 1984, Patterns of speciation in the Indo-West Pacific, B.P. Bishop Museum Special Publications 72: 15–31.

    Google Scholar 

  • Kay, E.A., 1990, Cypraeidae of the Indo-Pacific: cenozoic fossil history and biogeography, Bulletin of Marine Science 47: 23–34.

    Google Scholar 

  • Kensley, B., 1998, Estimates of species diversity of free-living marine isopod crustaceans on coral reefs, Coral Reefs 17: 83–88.

    Google Scholar 

  • Kennett, J.P., Keller, G., and Srinivasan, M.S., 1985, Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region, Geological Society of America Memoirs 163: 197–236.

    Google Scholar 

  • Kerswell, A.P., 2006, Global biodiversity patterns of benthic marine algae, Ecology 87: 2479–2488.

    PubMed  Google Scholar 

  • Kirkendale, L. and Meyer, C.P., 2004, Phylogeography of the Patelloida profunda group (Gastropoda: Lottidae): diversification in a dispersal-driven marine system, Molecular Ecology 13: 2749–2762.

    CAS  PubMed  Google Scholar 

  • Kleemann, K. and Hoeksema, B.W., 2002, Lithophaga (Bivalvia, Mytilidae), including a new species, boring into mushroom corals (Scleractinia, Fungiidae) off South Sulawesi, Indonesia, Basteria 66: 11–24.

    Google Scholar 

  • Knowlton, N., 2000, Molecular genetic analyses of species boundaries in the sea, Hydrobiologia 420: 73–90.

    CAS  Google Scholar 

  • Kohn, A.J., 1967, Environmental complexity and species diversity in the gastropod genus Conus on Indo-West Pacific reef platforms, American Naturalist 101: 251–259.

    Google Scholar 

  • Kohn, A.J., 1983, Marine biogeography and evolution in the tropical pacific: zoological perspectives, Bulletin of Marine Science 33: 528–535.

    Google Scholar 

  • Kohn, A.J., 1985, Evolutionary ecology of Conus on Indo-Pacific coral reefs, Proceedings Fifth International Coral Reef Congress, Tahiti 4: 139–144.

    Google Scholar 

  • Kohn, A.J., 1990, Biogeography and evolution of Indo-Pacific marine mollusca: patterns, progress, problems and prospect, Bulletin of Marine Science 47: 2–9.

    Google Scholar 

  • Kohn, A.J., 1997, Why are coral reef communities so diverse? in: Ormond, R.F.G., Gage, J.D., and Angel, M.V. (eds), Marine Biodiversity: Patterns and Processes, Cambridge University Press, Cambridge, UK, pp. 201–215.

    Google Scholar 

  • Kohn, A.J. and Perron, F.E., 1994, Life History and Biogeography Patterns in Conus, Clarendon Press, Oxford, UK.

    Google Scholar 

  • Kulbicki, M., Labrosse, P., and Ferraris, J., 2004, Basic principles underlying research projects on the links between the ecology and the uses of coral reef fishes in the Pacific, in: Visser, L.E. (ed.), Challenging Coasts. Transdisciplinary Excursions into Integrated Coastal Zone Development, Amsterdam University Press, Amsterdam, pp. 119–158.

    Google Scholar 

  • Ladd, H.S., 1960, Origin of the Pacific Island molluscan fauna, American Journal of Science 258A: 137–150.

    Google Scholar 

  • Landry, C., Geyer, L.B., Arakaki, Y., Uehara, T., and Palumbi, S.R., 2003, Recent speciation in the Indo-West Pacific: rapid evolution of gamete recognition and sperm morphology in cryptic species of sea urchin, Proceedings of the Royal Society B 270: 1839–1847.

    CAS  PubMed  Google Scholar 

  • Langer, M.R. and Hottinger, L., 2000, Biogeography of selected “larger” foraminifera, Micropaleontology 46 (Suppl. 1): 105–126.

    Google Scholar 

  • Langer, M.R. and Lipps, J.H., 2003, Foraminiferal distribution and diversity, Madang Reef and Lagoon, Papua New Guinea, Coral Reefs 22: 143–154.

    Google Scholar 

  • Lessios, H.A., Kane, J., and Robertson, D.R., 2003, Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans, Evolution 57: 2026–2036.

    CAS  PubMed  Google Scholar 

  • Lessios, H.A., Kessing, B.D., and Pearse, J.S., 2001, Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema, Evolution 55: 955–975.

    CAS  PubMed  Google Scholar 

  • Lessios, H.A., Kessing, B.D., and Robertson, D.R., 1998, Massive gene flow across the world’s most potent marine biogeographic barrier, Proceedings of the Royal Society B 265: 583–588.

    Google Scholar 

  • Lessios, H.A., Kessing, B.D., Robertson, D.R., and Paulay, G., 1999, Phylogeny of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents, Evolution 53: 806–817.

    Google Scholar 

  • Lindner, A., Cairns, S.D., and Guzman, H.M., 2004, Distichopora robusta sp. nov., the first shallow-water stylasterid (Cnidaria: Hydrozoa: Stylasteridae) from the tropical eastern Pacific, Journal of the Biological Association UK 84: 943–947.

    Google Scholar 

  • Longhurst, A., 1998, Ecological Geography of the Sea, Academic Press, San Diego, CA.

    Google Scholar 

  • Longhurst, A. and Pauly, D., 1987, Ecology of Tropical Oceans, Academic Press, San Diego, CA.

    Google Scholar 

  • Lourie, S.A., Green, D.M., and Vincent, A.C.J., 2005, Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae: Hippocampus), Molecular Ecology 14: 1073–1094.

    CAS  PubMed  Google Scholar 

  • Lourie, S.A. and Vincent, A.C.J., 2004, A marine fish follows Wallace’s Line: the phylogeography of the three-spot seahorse (Hippocampus trimaculatus, Syngnathidae, Teleostei) in Southeast Asia, Journal of Biogeography 31: 1975–1985.

    Google Scholar 

  • Macaranas, J.M. Ablan, C.A., Pante, M.J.R., Benzie, J.A.H., and Williams, S.T., 1992, Genetic structure of giant clam (Tridacna derasa) populations from reefs in the Indo-Pacific, Marine Biology 113: 231–238.

    Google Scholar 

  • Marsh, L.M. and Marshall, J.I., 1983, Some aspects of the zoogeography of northwestern Australian echinoderms (other than holothurians), Bulletin of Marine Science 33: 671–687.

    Google Scholar 

  • Masse, J.P. and Montaggioni, L.F., 2001, Growth history of shallow-water carbonates: control of accommodation on ecological and depositional processes, International Journal of Earth Sciences 90: 452–469.

    CAS  Google Scholar 

  • Massin, C., 2000, Ecology of the Leptoconchus spp. (Gastropoda, Coralliophilidae) infesting Fungiidae (Anthozoa, Madreporaria), Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Biologie 70: 235–252.

    Google Scholar 

  • Massin, C. and Dupont, S., 2003, Study on Leptoconchus species (Gastropoda, Coralliophilidae) infesting Fungiidae (Anthozoa: Scleractinia). 1. Presence of nine Operational Taxonomic Units (OTUs) based on anatomical and ecological characters, Belgian Journal of Zoology 133: 121–126.

    Google Scholar 

  • McAllister, D.E., 1991, What is the status of the world’s coral reef fishes? Sea Wind 5: 14–18.

    Google Scholar 

  • McAllister, D.E., Schueler, F.W., Roberts, C.M., and Hawkins, J.P., 1994, Mapping and GIS analysis of the global distribution of coral reef fishes on an equal-area grid, in: Miller, R.I. (ed.), Mapping the Diversity of Nature, Chapman & Hall, London, pp. 155–175.

    Google Scholar 

  • McCafferty, S., Bermingham, E., Quenouille, B., Planes, S., and Hoelzer, G., 2002, Historical biogeography and molecular systematics of the Indo-Pacific genus Dascyllus (Teleostei: Pomacentridae), Molecular Ecology 11: 1377–1392.

    CAS  PubMed  Google Scholar 

  • McCartney, M.A., Keller, G., and Lessios, A., 2000, Dispersal barriers in tropical oceans and speciation in atlantic and eastern pacific sea urchins of the genus Echinometra, Molecular Ecology 9: 1391–1400.

    CAS  PubMed  Google Scholar 

  • McCoy, E.D., 1983, Centers of origin revisited, Paleobiology 9: 17–19.

    Google Scholar 

  • McCoy, E.D. and Heck, K.L., 1976, Biogeography of corals, seagrasses and mangroves: an alternative to the center of origin concept, Systematic Zoology 25: 201–210.

    Google Scholar 

  • McGowan, J.A., 1986, The biogeography of pelagic ecosystems, UNESCO Technical Papers in Marine Science 49: 191–200.

    Google Scholar 

  • McGowan, J.A. and Walker, P.W., 1993, Pelagic diversity patterns, in: Ricklefs, R.E. and Schluter, D. (eds), Species Diversity in Ecological Communities. Historical and Geographical Perspectives, Chicago University Press, Chicago, pp. 203–214.

    Google Scholar 

  • McKenna, S.A., Allen, G.R., and Suryadi, S., 2002, A marine rapid assessment of the Raja Ampat Islands, Papua Province, Indonesia. RAP Bulletin of Biological Assessment 22, Conservation International, Washington, DC.

    Google Scholar 

  • McManus, J.W., 1985, Marine speciation, tectonics and sea-level changes in southeast Asia, Proceedings Fifth International Coral Reef Congress, Tahiti 4: 133–138.

    Google Scholar 

  • McManus, J.W., 1997, Tropical marine fisheries and the future of coral reefs: a brief review with emphasis on Southeast Asia, Proceedings Eighth International Coral Reef Symposium, Panama, 1996, 2: 129–134.

    Google Scholar 

  • McMillan, W.O. and Palumbi, S.R., 1995, Concordant evolutionary patterns among Indo-West Pacific Butterfly fish, Proceedings of the Royal Society B 260: 229–236.

    CAS  PubMed  Google Scholar 

  • Meyer, C., 2003, Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics, Biological Journal of the Linnean Society 79: 401–459.

    Google Scholar 

  • Meyer, C., 2004, Toward comprehensiveness: increased molecular sampling within Cypraeidae and its phylogenetic implications, Malacologia 46: 127–156.

    Google Scholar 

  • Meyer, C. and Paulay, G., 2005, DNA barcoding: error rates based on comprehensive sampling, PLOS Biology 3 (12): e422 (1–10).

    Google Scholar 

  • Milliman, J.D. and Meade, R.H., 1983, World-wide delivery of river sediment to the oceans, Journal of Geology 91: 1–21.

    Google Scholar 

  • Mironov, A.N., 2006, Centers of marine fauna redistribution, Entomological Review 86 (Suppl. 1): 32–44.

    Google Scholar 

  • Miyama, T., Awaji, T., Akitomo, K., and Imasato, N., 1996a, Seasonal transport variations in the Indonesian Seas, Proceedings of the IOC-WESTPAC Third International Science Symposium, Bali, 1994, pp. 650–664.

    Google Scholar 

  • Miyama, T., Awaji, T., Akitomo, K., and Imasato, N., 1996b, Seasonal variation of salinity in the mixed layer of the Indonesian Seas, Proceedings of the IOC-WESTPAC Third International Science Symposium, Bali, 1994, pp. 772–784.

    Google Scholar 

  • Moll, H., 1983, Zonation and diversity of Scleractinia on reefs off SW Sulawesi, Indonesia, Ph.D. thesis, Leiden University, Leiden, The Netherlands.

    Google Scholar 

  • Moll., H. and Suharsono, 1986, Distribution, diversity and abundance of reef corals in Jakarta Bay and Kepulauan Seribu, UNESCO Reports in Marine Science 40: 112–125.

    Google Scholar 

  • Montaggioni, L.F., 2000, Postglacial reef growth, Comptes Rendus de l’Academie des Sciences Paris, Sciences de la Terre et des Planètes 331: 319–330.

    Google Scholar 

  • Montaggioni, L.F., 2005, History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors, Earth-Science Reviews 71: 1–75.

    Google Scholar 

  • Montaggioni, L.F. and Faure, G., 1997, Response of coral reef communities to sea-level rise: a Holocene model from Mauritius (Western Indian Ocean), Sedimentology 44: 1053–1070.

    Google Scholar 

  • Moolengraaff, G.A.F., 1922, Geologie, in: Stok, J.P. van der (ed.), De Zeeën van Nederlandsch Oost-Indië, Brill, Leiden, pp. 272–357, maps I–VII.

    Google Scholar 

  • Moolengraaff, G.A.F., 1929, The coral reefs in the East Indian Archipelago: their distribution and mode of development, Proceedings Fourth Pacific Science Congress Java, pp. 1–35.

    Google Scholar 

  • Mora, C., Chittaro, P.M., Sale, P.F., Kritzer, J.P., and Ludsin, S.A., 2003, Patterns and processes in reef fish diversity, Nature 421: 933–936.

    CAS  PubMed  Google Scholar 

  • Mora, C. and Robertson, D.R., 2005, Factors shaping the range-size frequency distribution of the endemic fish fauna of the Tropical Eastern Pacific, Journal of Biogeography 32: 277–286.

    Google Scholar 

  • Mukai, H., 1993, Biogeography of the tropical seagrasses in the western Pacific, Australian Journal of Marine and Freshwater Research 44: 1–17.

    Google Scholar 

  • Mumby, P.J., Edwards A.J, Arias-González, J.E., Lindeman, K.C., Blackwell, P.G., Gall, A., Gorczynska, M.I., Harborne A.R., Pescod, C.L., Renken, R., Wabnitz, C.C.C., and Llewellyn, G., 2004, Mangroves enhance the biomass of coral reef fish communities in the Caribbean, Nature 427: 533–536.

    CAS  PubMed  Google Scholar 

  • Murina, V.G., 1975, The geographical distribution of marine worms of the phylum Sipuncula of the world ocean, in: Rice, M.E. and Todorovic, M. (eds), Proceedings of the International Symposium on the Biology of the Sipuncula and Echira, Vol. I, Institute for Biologica Research “Sinisa Stankovic”, Belgrade, and National Museum of Natural History, Smithsonian Institution, Washington, D.C, pp. 3–18.

    Google Scholar 

  • Muss, A., Robertson, D.R., Stepien, C.A., Wirtz, P., and Bowen, B.W., 2001, Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution, Evolution 55: 561–572.

    CAS  PubMed  Google Scholar 

  • Myers, A.A., 1997, Biogeographic barriers and the development of marine biodiversity, Estuarine and Coastal Shelf Science 44: 241–248.

    Google Scholar 

  • Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., and Kent, J., 2000, Biodiversity hotspots for conservation priorities, Nature 403: 853–858.

    CAS  PubMed  Google Scholar 

  • Myers, R.A. and Ottensmeyer, C.A., 2005, Extinction risk in marine species, in: Norse, E.A. and Crowder, L.B. (eds), Marine Conservation Biology: The Science of Maintaining the Sea’s Biodiversity, Island Press, Washington, DC, pp. 126–174.

    Google Scholar 

  • Myers, R.F., 1989, Micronesian Reef Fishes. A Comprehensive Guide to the Coral Reef Fishes of Micronesia, Coral Graphics, Guam.

    Google Scholar 

  • Neigel, J.E., 2003, Species-area relationships and marine conservation, Ecological Applications 13 (Suppl.): S138–S145.

    Google Scholar 

  • Neumann, A.C. and Macintyre, I., 1985, Reef response to sea-level rise: keep-up, catch-up or give-up, Proceedings Fifth International Coral Reef Congress, Tahiti, 1985, 3: 105–110.

    Google Scholar 

  • Nishihira, M. and Veron, J.E.N., 1995, Corals of Japan, Kaiyusha Publishers, Tokyo.

    Google Scholar 

  • Nitani, H., 1972, Beginning of the Kurioshio, in: Stommel, H. and Yoshida, K. (eds), Kuroshio: Its Physical Aspects, University of Tokyo Press, Tokyo, pp. 129–163.

    Google Scholar 

  • Nontji, A., 2002, Coral reefs of Indonesia: past, present and future, Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 1: 17–27.

    Google Scholar 

  • Norris, R.D., 2000, Pelagic species diversity, biogeography, and evolution, in: Erwin, D.H. and Wing, S.L. (eds), Deep Time: Paleobiology’s Perspective, The Paleontological Society, Lawrence, Paleobiology 26 (4) (Suppl.), pp. 236–258.

    Google Scholar 

  • Ofwegen, L.P. van, 2002, Status of the knowledge of the Indo-Pacific soft coral genus Sinularia May, 1989 (Anthozoa: Octocorallia), Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 1: 167–171.

    Google Scholar 

  • Olsgard, F., Brattegard, T., and Holthe, T., 2003, Polychaetes as surrogates for marine biodiversity: lower taxonomic resolution and indicator groups, Biodiversity and. Conservation 12: 1033–1049.

    Google Scholar 

  • Olson, D.B., 1986, Transition zones and faunal boundaries in relationship to physical properties of the ocean, UNESCO Technical Papers in Marine Science 49: 219–225.

    Google Scholar 

  • Ormond, R.F.G. and Roberts, C.M., 1997, The biodiversity of coral reef fishes, in: Ormond, R.F.G., Gage, J.D., and Angel, M.V. (eds), Marine Biodiversity: Patterns and Processes, Cambridge University Press, Cambridge, UK, pp. 216–257.

    Google Scholar 

  • Osman, R.W. and Whitlatch, R.B., 1978, Patterns of species diversity: fact or artefact? Paleobiology 4: 41–54.

    Google Scholar 

  • Ota, Y. and Chappell, J., 1999, Holocene sea-level rise and coral reef growth on a tectonically rising coast, Huon Peninsula, Papua New Guinea, Quaternernary International 55: 51–59.

    Google Scholar 

  • Othman, B.H.R., Greenwood, J.G., and Rothlisberg, P.C., 1990, The copepod fauna of the Gulf of Carpentaria, and its Indo-West Pacific affinities, Netherlands Journal of Sea Research 25: 561–572.

    Google Scholar 

  • Ovenden, J.R., Salini, J., O’Connor, S., and Street, R., 2004, Pronounced genetic population structure in a potentially vagile fish species (Pristipomoides multidens, Teleostei; Perciformes; Lutjanidae) from the East Indies triangle, Molecular Ecology 13: 1991–1999.

    CAS  PubMed  Google Scholar 

  • Paine, B., 1988, Coral Triangle, in: Neal, A. (ed.), The Natural World, BBC, Bristol (45 minutes documentary for television on behalf of UNEP).

    Google Scholar 

  • Palumbi, S.R., 1994, Genetic divergence, reproductive isolation and speciation in the sea, Annual Review of Ecology and Systematics 25: 547–572.

    Google Scholar 

  • Palumbi, S. R., 1996, What can molecular genetics contribute to marine biogeography? An urchin’s tale, Journal of Experimental Marine Biology and Ecology 203:75–92.

    CAS  Google Scholar 

  • Palumbi, S.R., 1997, Molecular biogeography of the Pacific, Coral Reefs 16 (Suppl.): S47–S52.

    Google Scholar 

  • Palumbi, S.R., 2003, Population genetics, demographic connectivity and the design of marine protected areas, Ecological Applications 13 (Suppl.): S146–S158.

    Google Scholar 

  • Pandolfi, J.M., 1992, Successive isolation rather than evolutionary centres for the origination of Indo-Pacific reef corals, Journal of Biogeography 19: 593–609.

    Google Scholar 

  • Paulay, G., 1990, Effects of late Cenozoic sea-level fluctuations on the bivalve faunas of tropical oceanic islands, Paleobiology 16: 415–434.

    Google Scholar 

  • Paulay, G., 1996, Dynamic clams: changes in the bivalve fauna of Pacific islands as a result of sea-level fluctuations, American Malacological Bulletin 12: 45–57.

    Google Scholar 

  • Paulay, G., 1997, Diversity and distribution of reef organisms, in: Birkeland, C.E. (ed.), Life and Death of Coral Reefs, Chapman & Hall, NY, pp. 298–353.

    Google Scholar 

  • Paulay, G. and Meyer, C., 2002, Diversification in the Tropical Pacific: Comparisons between marine and terrestrial systems and the importance of founder speciation, Integrative and Comparative Biology 42: 922–934.

    Google Scholar 

  • Paulay, G. and Meyer, C., 2006, Dispersal and divergence across the greatest ocean region: Do larvae matter? Integrative and Comparative Biology 46: 269–281.

    Google Scholar 

  • Perrin, C. and Borsa, P., 2001, Mitochondrial DNA analysis of the geographic structure of Indian scad mackerel in the Indo-Malay archipelago, Journal of Fisheries Biology 59: 1421–1426.

    CAS  Google Scholar 

  • Perron, F.E. and Kohn, A.J., 1985, Larval dispersal and geographic distribution in coral reef gastropods of the genus Conus, Proceedings Fifth International Coral Reef Congress, Tahiti, 1985, 5: 95–100.

    Google Scholar 

  • Pet-Soede, L., Cesar, H.S.J., and Pet, J.S., 1999, The economics of blast fishing on Indonesian coral reefs, Environmental Conservation 26: 83–93.

    Google Scholar 

  • Phillips, J.A., 2001, Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora? Biodiversity and Conservation 10: 1555–1577.

    Google Scholar 

  • Phillips, R.C. and Meñez, E.G., 1988, Seagrasses, Smithsonian Contributions to Marine Science 34: 1–104.

    Google Scholar 

  • Pierrot-Bults, A.C., 1997, Biological diversity in macrozooplankton: more than counting species, in: Ormond, R.F.G., Gage, J.D., and Angel, M.V. (eds), Marine Biodiversity: Patterns and Processes, Cambridge University Press, Cambridge, UK, pp. 69–93.

    Google Scholar 

  • Pierrot-Bults, A.C., 2003, Pelagic biodiversity and biogeography around the Southamerican continent, Gayana 67: 161–167.

    Google Scholar 

  • Pierrot-Bults, A.C. and Spoel, S. van der, 2003, Macrozooplankton diversity: how much do we really know? Zoologische Verhandelingen Leiden 345: 297–312.

    Google Scholar 

  • Ponder, W.F. and Vokes, E.H., 1988, A revision of the Indo-West Pacific fossil and recent species of Murex s.s. and Haustellum (Mollusca: Gastropoda: Muricidae), Records of the Australian Museum (Suppl.) 8: 1–160.

    Google Scholar 

  • Porter, J.W. and Tougas, J.I., 2001, Reef ecosystems: threats to their biodiversity, in: Levin, S.A. (ed.), Encyclopedia of Biodiversity, Vol. 5, Academic Press, San Diego, CA, pp. 73–93.

    Google Scholar 

  • Potts, D.C., 1983, Evolutionary disequilibrium among Indo-Pacific corals, Bulletin of Marine Science 33: 619–632.

    Google Scholar 

  • Potts, D.C., 1984, Generation times and the Quaternary evolution of reef-building corals, Paleobiology 10: 48–58.

    Google Scholar 

  • Potts, D.C., 1985, Sea-level fluctuations and speciation in the Scleractinia, Proceedings Fifth International Coral Reef Congress, Tahiti, 1985, 4: 127–132.

    Google Scholar 

  • Prud’homme van Reine, W.F., Verheij, E., and Coppejans, E., 1996, Species and ecads of Caulerpa (Ulvophyceae, Chlorophyta) in Malesia (South-East Asia): taxonomy, biogeography and biodiversity, Netherlands Journal of Aquatic Ecology 30: 83–98.

    Google Scholar 

  • Qiu, B., Potemra, J.T., and Lukas, R., 1996, On the seasonal and interannual bifurcation of the North Equatorial Current along the Pacific western boundary, Proceedings of the IOC-WESTPAC Third International Science Symposium, Bali, 1994, pp. 772–784.

    Google Scholar 

  • Randall, J.E., 1998, Zoogeography of shore fishes of the Indo-Pacific region, Zoological Studies 37: 227–268.

    Google Scholar 

  • Razak, T.B. and Hoeksema, B.W., 2003, The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia, Zoologische Verhandelingen Leiden 345: 313–336.

    Google Scholar 

  • Reaka-Kudla, M.L., 1997a, The global biodiversity of coral reefs: a comparison with rain forests, in: Reaka-Kudla, M.L., Wilson, D.E., and Wilson, E.O. (eds), Biodiversity II. Understanding and Protecting our Biological Resources, Joseph Henry Press, Washington, DC, pp. 83–108.

    Google Scholar 

  • Reaka-Kudla, M.L., 1997b, An estimate of known and unknown biodiversity and potential for extinction on coral reefs, Reef Encounter 17: 8–12.

    Google Scholar 

  • Reid, D.G., 1986, The littorinid molluscs of mangrove forest in the Indo-Pacific region. The genus Littoraria (Mollusca, Gastropoda, Littorinidae), British Museum (Natural History), London.

    Google Scholar 

  • Reid, D.G., 2001, New data on the taxonomy and distribution of the genus Littoraria Griffith and Pidgeon, 1834 (Gastropoda: Littorinidae) in Indo-West Pacific mangrove forests, Nautilus 115: 115–139.

    Google Scholar 

  • Reid, D.G., Lal, K., Mackenzie-Dodds, J., Kaligis, F., Littlewood, D.T.J., and Williams, S.T., 2006, Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific, Journal of Biogeography 33: 990–1006.

    Google Scholar 

  • Renema, W., 2002, Larger foraminifera as marine environmental indicators, Scripta Geologica 124: 1–260.

    Google Scholar 

  • Renema, W., 2006, Large benthic foraminifera from the deep photic zone of a mixed siliciclastic-carbonate shelf off East Kalimantan, Indonesia, Marine Micropaleontology 58: 73–82.

    Google Scholar 

  • Renema, W., Hoeksema, B.W., and Hinte, J.E. van, 2001, Larger benthic foraminifera and their distribution patterns on the Spermonde shelf, South Sulawesi, Zoologische Verhandelingen Leiden 334: 115–149.

    Google Scholar 

  • Renema, W. and Troelstra, S.R., 2001, Larger foraminifera distribution on a mesotrophic carbonate shelf in SW Sulawesi, Paleogeography, Paleoclimatology, Paleoecology 175: 125–146.

    Google Scholar 

  • Ricklefs, R.E. and Latham, R.E., 1993, Global patterns of diversity in mangrove floras, in: Ricklefs, R.E. and Schluter, D. (eds), Species Diversity in Ecological Communities. Historical and Geographical Perspectives, Chicago University Press, Chicago, pp. 215–229.

    Google Scholar 

  • Ricklefs, R.E. and Schluter, D., 1993, Species diversity: regional and historical influences, in: Ricklefs, R.E. and Schluter, D. (eds), Species Diversity in Ecological Communities. Historical and Geographical Perspectives, Chicago University Press, Chicago, pp. 350–363.

    Google Scholar 

  • Roberts, C.M. and Hawkins, J.P., 1999, Extinction risk in the sea, Trends in Ecology and Evolution 14: 241–246.

    PubMed  Google Scholar 

  • Roberts, C.M., Hawkins, J., Strong, A.E., Schueler, F.W., and McAllister, D.E., 1998, The distribution of coral reef fish biodiversity: the climate-biodiversity connection, Sea Wind 12: 14–28.

    Google Scholar 

  • Roberts, C.M., McClean, C.J., Veron, J.E.N., Hawkins, J.P., Allen, G.R., McAllister, D.E., Mittermeier, C.G., Schueler, F.W., Spalding, M., Wells, F., Vynne, C., and Werner, T.B., 2002, Marine conservation hotspots and conservation priorities for tropical reefs, Science 295: 1280–1284.

    CAS  PubMed  Google Scholar 

  • Rosen, B.R., 1971, The distribution of reef coral genera in the Indian Ocean, in: Stoddart, D.R. and Yonge, C.M. (eds), Regional Variation in Indian Ocean Coral Reefs, Academic Press, London, Symposium Zoological Society London 28: 263–299.

    Google Scholar 

  • Rosen, B.R., 1981, The tropical high diversity enigma–the corals’-eye view, in: Forey, P.L. (ed.), The Evolving Biosphere. Chance Change and Challenge, British Museum (Natural History), London, and Cambridge University Press, Cambridge, UK, pp. 103–129.

    Google Scholar 

  • Rosen, B.R., 1984, Reef coral biogeography and climate through the late Cainozoic: just islands in the sun or a critical pattern of islands? in: Brenchley, P.J. (ed.), Fossils and Climate, Wiley, Chichester, UK, pp. 201–262.

    Google Scholar 

  • Rosen, B.R., 1988a, Biogeographic patterns: a perceptual overview, in: Meyers, A.A. and Giller, P.S. (eds), Analytical Biogeography. An Integrated Approach to the Study of Animal and Plant Distributions, Chapman & Hall, London, pp. 23–55.

    Google Scholar 

  • Rosen, B.R., 1988b, From fossils to earth history: applied historical biogeography, in: Meyers, A.A. and Giller, P.S. (eds), Analytical Biogeography. An Integrated Approach to the Study of Animal and Plant Distributions, Chapman & Hall, London, pp. 437–481.

    Google Scholar 

  • Rosen, B.R., 1988c, Progress, problems and patterns in the biogeography of reef corals and other tropical marine organisms, Helgoländer Meeresuntersuchungen 42: 269–301.

    Google Scholar 

  • Rosen, B.R. and Smith, A.B., 1988, Tectonics from fossils? Analysis of reef coral and sea urchin distributions from Late-Cretaceous to Recent, using a new method, in: Audley-Charles, M.G. and Hallam, A. (eds), Gondwana and Tethys, Oxford University Press, Oxford, NY, pp. 275–306.

    Google Scholar 

  • Rosenthal, Y., Oppo, D.W., and Linsley B.K., 2003, The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific, Geophysical Research Letters 30 (8), 1428, doi:10.1029/2002GL016612.

    Google Scholar 

  • Rosenzweig, M.L., 1995, Species Diversity in Space and Time, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Ross, A. and Newman, W.A., 2002, Coral barnacles: Cenozoic decline and extinction in the Atlantic/East Pacific versus diversification in the Indo-West Pacific, Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 2: 179–184.

    Google Scholar 

  • Roy, K., Balch, D.P., and Hellberg, M.E., 2001a, Spatial patterns of morphological diversity across the Indo-Pacific: analyses using strombid gastropods, Proceedings of the Royal Society B 268: 2503–2508.

    CAS  PubMed  Google Scholar 

  • Roy, K., Jablonsky, D., and Valentine, J.W., 2001b, Climate change, species range limits and body size in marine bivalves, Ecology Letters 4: 366–370.

    Google Scholar 

  • Samyn, Y. and Tallon, I., 2005, Zoogeography of the shallow-water holothuroids of the western Indian Ocean, Journal of Biogeography 32: 1523–1538.

    Google Scholar 

  • Santini, F. and Winterbottom, R., 2002, Historical biogeography of Indo-western Pacific coral reef biota: is the Indonesian region a centre of origin? Journal of Biogeography 29: 189–205.

    Google Scholar 

  • Scheltema, R.S., 1988, Initial evidence for the transport of teleplanic larvae of benthic invertebrates across the East Pacific Barrier, Biological Bulletin 174: 145–152.

    Google Scholar 

  • Scheltema, R.S. and Hall, J.R., 1975, The dispersal of pelagosphaera larvae by ocean currents and the geographical distribution of sipunculans, in: Rice, M.E. and Todorovic, M. (eds), Proceedings of the International Symposium on the Biology of the Sipuncula and Echira, Vol. I, Institute for Biologica Research “Sinisa Stankovic”, Belgrade, and National Museum of Natural History, Smithsonian Institution, Washington, DC, pp. 103–115, pl. 1.

    Google Scholar 

  • Scheltema, R.S. and Rice, M.E., 1990, Occurrence of teleplanic pelagosphera larvae of sipunculans in tropical regions of the Pacific and Indian Oceans, Bulletin of Marine Science 47: 159–181.

    Google Scholar 

  • Scheltema, R.S. and Williams, I.P., 1983, Long-distance dispersal of planktonic larvae and the biogeography and evolution of some Polynesian and western Pacific mollusks, Bulletin of Marine Science 33: 545–565.

    Google Scholar 

  • Scheltema, R.S., Williams, I.P., and Lobel, P.S., 1996, Retention around and long-distance dispersal between oceanic islands by planktonic larvae of benthic gastropod Mollusca, American Malacological Bulletin 12: 67–75.

    Google Scholar 

  • Schiaparelli, S., Barucca, M., Olmo, E., Boyer, M., and Canapa, A., 2005, Phylogenetic relationships within Ovulidae (Gastropoda: Cypraeoidea) based on molecular data from the 16S rRNA gene, Marine Biology 147: 411–420.

    CAS  Google Scholar 

  • Schilder, F.A. and Schilder, M., 1938, Prodrome of a monograph on living Cypraeidae, Proceedings of the Malacological Society of London 23: 119–231.

    Google Scholar 

  • Schilder, F.A., 1965, The geographical distribution of cowries, The Veliger 7: 171–183.

    Google Scholar 

  • Schilder, F.A., 1969, Zoogeographical studies on living cowries, The Veliger 11: 367–377.

    Google Scholar 

  • Schuhmacher, H., 1976, Korallenriffe: Verbreitung, Tierwelt, Ökologie. 1st Edition, BLV Verlagsgesellschaft, München.

    Google Scholar 

  • Schuhmacher, H., 1988, Korallenriffe: Verbreitung, Tierwelt, Ökologie. 3rd Edition, BLV Verlagsgesellschaft, München.

    Google Scholar 

  • Sebens, K.P., 1994, Biodiversity of coral reefs: what are we losing and why? American Zoologist 34: 115–133.

    Google Scholar 

  • Senerpont Domis, L.N. de, 2004, Assessing macrophyte diversity on coral reefs in the Philippines. Evaluation of the use of indicator species, functional groups and other surrogates, Ph.D. thesis, Leiden University, Leiden, The Netherlands.

    Google Scholar 

  • Sheppard, C.R.C., 1998, Biodiversity patterns in Indian Ocean corals, and effects of taxonomic error in data, Biodiversity and Conservation 7: 847–868.

    Google Scholar 

  • Shuto, T., 1983, Larval development and geographical distribution of the Indo-West Pacific Murex, Bulletin of Marine Science 33: 536–544.

    Google Scholar 

  • Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer,  I., and Smeed, D.A., 2003, Sea-level fluctuations during the last glacial cycle, Nature 423: 853–858.

    CAS  PubMed  Google Scholar 

  • Silva, P.C., 1992, Geographic patterns in diversity in benthic marine algae, Pacific Science 46: 429–437.

    Google Scholar 

  • Sinclair, M., 1988, Marine Populations: An Essay on Population Regulation and Speciation, University of Washington Press, Seattle, WA.

    Google Scholar 

  • Smetacek, V.S., 1986, Impact of freshwater discharge on production and transfer of materials in the marine environment, in: Skreslet, S. (ed.), The Role of Freshwater Outflow in Coastal Marine Ecosystems, Springer, Berlin, pp. 85–106.

    Google Scholar 

  • Spalding, M.D., Ravilious, C., and Green, E.P., 2001, World Atlas of Coral Reefs, University of California Press, Berkeley, CA.

    Google Scholar 

  • Spalding, M.D., Taylor, M., Ravilious, C., Short, F., and Green, E., 2003, Global overview. The distribution and status of seagrasses, in: Green, E.P. and Short, F.T. (eds), World Atlas of Seagrasses University of California Press, Berkeley, CA, pp. 5–26.

    Google Scholar 

  • Spoel, S. van der, and Heyman, R.P., 1983, A Comparative Atlas of Zooplankton. Biological Patterns in the Oceans, Wetenschappelijke Uitgeverij Bunge, Utrecht.

    Google Scholar 

  • Spoel, S. van der, and Pierrot-Bults, A.C. (eds), 1979, Zoogeography and Diversity in Plankton, Bunge Scientific Publishers, Utrecht.

    Google Scholar 

  • Springer, V.G., 1982, Pacific plate biogeography, with special reference to shore fishes, Smithsonian Contributions to Zoology 367: 1–182.

    Google Scholar 

  • Springer, V.G. and Williams, J.T., 1990, Widely distributed Pacific plate endemics and lowered sea-level, Bulletin of Marine Science 47: 631–640.

    Google Scholar 

  • Steenis, C.G.G.J. van, 1962, The distribution of mangrove plant genera and its significance for palaeography, Proceedings van de Koninklijke Nederlandse Academie van Wetenschappen C 65: 164–169.

    Google Scholar 

  • Stehli, F.G., 1968, Taxonomic diversity gradients in pole location: the recent model, in: Drake, E.T. (ed.), Evolution and Environment, Yale University Press, New Haven, CT, pp. 163–227.

    Google Scholar 

  • Stehli, F.G. and Wells, J.W., 1971, Diversity and age patterns in hermatypic corals, Systematic Zoology 20: 115–126.

    Google Scholar 

  • Stehli, F.G., McAlester, A.L., and Helsley, C.E., 1967, Taxonomic diversity of recent bivalves and some implications for geology, Bulletin of the Geological Society of America 78: 455–466.

    Google Scholar 

  • Taylor, J.D., 1997, Diversity and structure of tropical Indo-Pacific benthic communities: relations to regimes of nutrient input, in: Ormond, R.F.G., Gage, J.D., and Angel, M.V. (eds), Marine Biodiversity: Patterns and Processes, Cambridge University Press, Cambridge, UK, pp. 178–200.

    Google Scholar 

  • Thomas, J.D., 1993, Biological monitoring and tropical biodiversity in marine environments: a critique with recommendations, and comments on the use of amphipods as bioindicators, Journal of Natural History 27: 795–806.

    Google Scholar 

  • Thomas, J.D., 1997, Using marine invertebrates to establish research and conservation priorities, in: Reaka-Kudla, M.L., Wilson, D.E., and Wilson, E.O. (eds), Biodiversity II. Understanding and Protecting our Biological Resources, Joseph Henry Press, Washington, DC, pp. 357–369.

    Google Scholar 

  • Thorne-Miller, B., 1999, The Living Ocean. Understanding and Protecting Marine Biodiversity, Island Press, Washington, DC.

    Google Scholar 

  • Tjia, H.D. and Fuji, S., 1992, Late Quarternary shorelines in Peninsula Malaysia, in: Tjia, H.D. and Abdullah, S.M.S. (eds), The Coastal Zones of Peninsular Malaysia, Penerbit Universiti Kebangsaan Malaysia, Bangi, pp. 28–41.

    Google Scholar 

  • Tokeshi, M., 1999, Species Coexistence: Ecological and Evolutionary Perspectives, Blackwell Science, Oxford, UK.

    Google Scholar 

  • Tomascik, T, Mah, A, J., Nontji, A., and Moosa, M.K., 1997, The Ecology of the Indonesian Seas, 2 volumes, Periplus, Singapore.

    Google Scholar 

  • Tursh, B. and Greifeneder, D., 2001, Oliva Shells. The Genus Oliva and the Species Problem, L’Informatore Piceno, Ascona (Italy), and Bosque BMT, Costa Rica.

    Google Scholar 

  • Umbgrove, J.H.F, 1929, De koraalriffen der Duizend Eilanden (Java-Zee), Wetenschappelijke Mededelingen van de Dienst Mijnbouw in Nederlandsch-Indië 12: 1–47, pls. I–VI.

    Google Scholar 

  • Umbgrove, J.H.F, 1947, Coral reefs of the East Indies, Bulletin of the Geological Society of America 58: 729–778.

    Google Scholar 

  • Umbgrove, J.H.F. and Verwey, J., 1929, The coral reefs in the Bay of Batavia, Fourth Pacific Science Congress Java, Excursion A2: 1–30.

    Google Scholar 

  • UNEP-WCMC, 2004, World Atlas of Seagrasses, http://www.unep-wcmc.org/marine/seagrassatlas /.

  • Uthicke, S. and Benzie, J.A.H., 2003, Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holothuroidea) populations from the Indo-Pacific, Molecular Ecology 12: 2635–2648.

    CAS  PubMed  Google Scholar 

  • Vallejo, B.M., 2001, The biogeography of Philippine marine molluscs, Loyola Schools Reviews 1: 21–42.

    Google Scholar 

  • Vallejo, B.M., 2005, Inferring the mode of speciation in Indo-Pacific Conus (Gastropoda: Conidae), Journal of Biogeography 32: 1429–1439.

    Google Scholar 

  • VandenSpiegel, D., Eeckhaut, I., and Jangoux, M., 1998, Host selection by Synalpheus stimpsoni (De Man), an ectosymbiotic shrimp of comatulid crinoids, inferred by a field survey and laboratory experiments, Journal of Experimental Marine Biology and Ecology 225: 185–196.

    Google Scholar 

  • Verheij, E. and Erftemijer, P.L.A., 1993, Distribution of seagrasses and associated macroalgae in South Sulawesi, Indonesia, Blumea 38: 45–64.

    Google Scholar 

  • Vermeij, G.J., 1973, Molluscs in mangrove swamps: physiognomy, diversity, and regional differences, Systematic Zoology 22: 609–624.

    Google Scholar 

  • Vermeij, G.J., 1978, Biogeography and Adaptation. Patterns of Marine Life, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Vermeij, G.J., 1987, The dispersal barrier in the tropical Pacific: implications for molluscan speciation and extinction, Evolution 41: 1046–1058.

    Google Scholar 

  • Vermeij, G.J., 1989, Interoceanic differences in adaptation: effects of history and productivity, Marine Ecology Progress Series 57: 293–305.

    Google Scholar 

  • Vermeij, G.J., 2004, Island life: a view from the sea, in: Lomolino, M.V. and Heaney, L.R. (eds), Frontiers of Biogeography. New Directions in the Geography of Nature, Sinauer Associates, Sunderland, UK, pp. 239–254.

    Google Scholar 

  • Veron, J.E.N., 1985, Aspects of the biogeography of hermatypic corals, Proceedings Fifth International Coral Reef Congress, Tahiti, 1985, 4: 83–88.

    Google Scholar 

  • Veron, J.E.N., 1986, Corals of Australia and the Indo-Pacific, Angus & Robertson, Sydney.

    Google Scholar 

  • Veron, J.E.N., 1993, A biogeographic database of hermatypic corals: species of the central Indo-Pacific, genera of the world, Australian Institute of Marine Science Monograph Series 10: 1–433.

    Google Scholar 

  • Veron, J.E.N., 1994, Biodiversity of reef corals: is there a problem in the Indo-Pacific centre of diversity? in: Ginsburg, R.N. (ed.), Proceedings of the Colloquium on Global Aspects of Coral Reefs: Health, Hazards, and History, University of Miami, Florida, 1993, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, pp. 365–370.

    Google Scholar 

  • Veron, J.E.N., 1995, Corals in Space and Time: the Biogeography and Evolution of the Scleractinia, Cornell University Press, Ithaca.

    Google Scholar 

  • Veron, J.E.N., 2000, Corals of the World, 3 volumes, Australian Institute of Marine Science, Townsville, MC.

    Google Scholar 

  • Veron, J.E.N., 2002, Reef corals of the Raja Ampat Islands, Papua Province, Indonesia, in: McKenna, S.A., Allen, G.R., and Suryadi, S. (eds), A Marine Rapid Assessment of the Raja Ampat Islands, Papua Province, Indonesia. RAP Bulletin of Biological Assessment 22, Conservation International, Washington, DC, pp. 26–28.

    Google Scholar 

  • Veron, J.E.N. and Marsh, L.M., 1988, Hermatypic corals of Western Australia: records and annotated species list, Records of the West Australian Museum 29 (Suppl.): 1–136.

    Google Scholar 

  • Veron, J.E.N. and Minchin, P.R., 1992, Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan, Continental Shelf Research 12: 835–857.

    Google Scholar 

  • Voogd, N.J. de, Cleary, D.F.R., Hoeksema, B.W., Noor, A., and Soest, R.W.M. van, 2006, Sponge beta diversity in the Spermonde Archipelago, SW Sulawesi, Indonesia, Marine Ecology Progress Series 309: 131–142.

    Google Scholar 

  • Voogd, N.J. de, Soest, R.W.M. van, and Hoeksema, B.W., 1999, Cross-shelf distribution of southwest Sulawesi reef sponges, Memoirs of the Queensland Museum 44: 147–154.

    Google Scholar 

  • Voris, H.K., 2000, Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations, Journal of Biogeography 27: 1153–1167.

    Google Scholar 

  • Wallace, C.C., 1997, The Indo-Pacific centre of coral diversity re-examined at species level, Proceedings Eighth International Coral Reef Symposium, Panama, 1996, 1: 365–370.

    Google Scholar 

  • Wallace, C.C., 1999a, The Togian Islands: coral reefs with a unique coral fauna and a hypothesised Tethys Sea signature, Coral Reefs 18: 162.

    Google Scholar 

  • Wallace, C.C., 1999b, Staghorn Corals of the World: A Revision of the Coral Genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) Worldwide, with Emphasis on Morphology, Phylogeny and Biogeography, CSIRO Publishing, Melbourne.

    Google Scholar 

  • Wallace, C.C., 2002, Journey to the heart of the centre - Origins of high marine faunal diversity in the central Indo-Pacific from the perspective of an acropologist, Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 1: 33–39.

    Google Scholar 

  • Wallace, C.C., Pandolfi, J.M., Young, A. and Wolstenholme, J., 1991, Indo-Pacific coral biogeography: a casestudy from the Acropora selago group, Australian Systematic Botany 4: 199–210.

    Google Scholar 

  • Wallace, C.C., Paulay, G., Hoeksema, B.W., Bellwood, D.R., Hutchings, P.A., Barber, P.H., Erdmann, M., and Wolstenholme, J., 2002, Nature and origins of unique high diversity reef faunas in the Bay of Tomini, Central Sulawesi: The ultimate “centre of diversity? Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 1: 185–192.

    Google Scholar 

  • Wallace, C.C. and Rosen, B.R., 2006, Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: implications for the evolution of modern diversity patterns of reef corals, Proceedings of the Royal Society B 273: 975–982.

    PubMed  Google Scholar 

  • Wallace, C.C. and Wolstenholme, J., 1998, Revision of the coral genus Acropora (Scleractinia: Astrocoeniina: Acroporidae) in Indonesia, Zoological Journal of the Linnean Society 123: 199–384.

    Google Scholar 

  • WCMC, 1997, Coral Reefs and Mangroves of the World, http://www.unep-wcmc.org/marine/data/coral_mangrove/marine_maps_main.html.

  • Weel, K.M. van, 1923, Meteorological and hydrographical observations made in the western part of the Netherlands East Indian Archipelago, Treubia 4: 1–559.

    Google Scholar 

  • Wells, F.E., 1990, Comparative zoogeography of marine molluscs from northern Australia, New Guinea, and Indonesia, The Veliger 33: 140–144.

    Google Scholar 

  • Wells, F.E., 2002, Centres of species richness and endemism of shallow-water marine molluscs in the tropical Indo-West Pacific, Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 2: 941–945.

    Google Scholar 

  • Wells, J.W., 1954, Recent corals of the Marshall Islands, US Geological Survey Professional Papers 260: 609–615.

    Google Scholar 

  • Wells, J.W., 1966, Evolutionary development in the scleractinian family Fungiidae, in: Rees, W.J. (ed.), The Cnidaria and their Evolution, Academic Press, London, Symposium Zoological Society London 16: 223–246.

    Google Scholar 

  • Werner, T.B. and Allen, G.R., 1998, A rapid biodiversity assessment of the coral reefs of Milne Bay Province, Papua New Guinea. RAP Bulletin of Biological Assessment 11, Conservation International, Washington, DC.

    Google Scholar 

  • Werner, T.B. and Allen, G.R., 2000, A Rapid Marine Biodiversity Assessment of the Calamianes Islands, Palawan Province, Philippines. RAP Bulletin of Biological Assessment 17, Conservation International, Washington, DC.

    Google Scholar 

  • White, A.T., Vogt, H.P., and Arin, T., 2000, Philippine coral reefs under threat: the economic losses caused by reef destruction, Marine Pollution Bulletin 40: 598–605.

    CAS  Google Scholar 

  • Wilkinson, C.R. and Cheshire, A.C., 1989, Patterns in the distribution of sponge populations across the central Great Barrier Reef, Coral Reefs 8: 127–134.

    Google Scholar 

  • Wilkinson, C.R. and Cheshire, A.C., 1990, Comparisons of sponge populations across the barrier reefs of Australia and Belize: evidence for higher productivity in the Caribbean, Marine Ecology Progress Series 67: 285–294.

    Google Scholar 

  • Wilkinson, C.R. and Trott, L.A., 1985, Light as a factor determining the distribution of sponges across the central Great Barrier Reef. Proceedings Fifth International Coral Reef Congress, Tahiti, 1985, 5: 125–130.

    Google Scholar 

  • Williams, D.M., 1982, Patterns in the distribution of fish communities across the central Great Barrier Reef, Coral Reefs 1: 35–43.

    Google Scholar 

  • Williams, D.M. and Hatcher, A.I., 1983, Structure of fish communities on outer slopes of inshore, mid-shelf and outer shelf reefs of the Great Barrier Reef, Marine Ecology Progress Series 10: 239–250.

    Google Scholar 

  • Williams, D.M., Dixon, P., and English, S., 1988, Cross-shelf distribution of copepods and fish larvae across the central Great Barrier Reef, Marine Biology 99: 577–589.

    Google Scholar 

  • Williams, G.C., 1993, Biotic diversity, biogeography, and phylogeny of Pennatulacean Octocorals associated with coral reefs in the Indo-Pacific, Proceedings Seventh International Coral Reef Symposium, Guam, 1992, 2: 729–735.

    Google Scholar 

  • Williams, S.T., 2000, Species boundaries in the starfish genus Linckia, Marine Biology 136: 137–148.

    Google Scholar 

  • Williams, S.T. and Benzie, J.A.H., 1996, Genetic uniformity of widely separated populations of the coral reef starfish Linckia laevigata from the East Indian and West Pacific Oceans, revealed by allozyme electrophoresis, Marine Biology 126: 99–107.

    Google Scholar 

  • Williams, S.T. and Benzie, J.A.H., 1997, Indo-West Pacific patterns of genetic differentiation in the high-dispersal starfish Linckia laevigata, Molecular Ecology 6: 559–573.

    Google Scholar 

  • Williams, S.T. and Benzie, J.A.H., 1998, Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data, Evolution 52: 87–99.

    Google Scholar 

  • Williams, S.T., Jara, J., Gomez, E., and Knowlton, N, 2002, The marine Indo-West Pacific break: contrasting the resolving power of mitochondrial and nuclear genes, Integrative and Comparative Biology 42: 941–952.

    Google Scholar 

  • Williams, S.T., Knowlton, N., and Weigt, L.A., 1999, Indo-Pacific molecular biogeography of the coral-dwelling snapping shrimp Alpheus lottini (Decapoda: Caridea: Alpheidae), in: Sheppard, C.R.C. and Seaward, M.R.D. (eds), Ecology of the Chagos Archipelago, Occassional Publications of the Linnean Society, 2, pp. 195–206.

    Google Scholar 

  • Williams, S.T. and Reid, D.G., 2004, Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina, Evolution 58: 2227–2251.

    CAS  PubMed  Google Scholar 

  • Williamson, M., 1988, Relationship of species number to area, distance and other variables, in: Meyers, A.A. and Giller, P.S. (eds), Analytical Biogeography. An Integrated Approach to the Study of Animal and Plant Distributions, Chapman & Hall, London, pp. 91–115.

    Google Scholar 

  • Wilson, E.J. and Rosen, B.R., 1998, Implications of paucity of corals in the Paleogene of SE Asia: plate tectonics or Centre of Origin, in: Hall, R. and Holloway, D. (eds), Biogeography and Geological Evolution of Southeast Asia, Backhuys Publishers, Leiden, pp. 165–195.

    Google Scholar 

  • Woesik, R. van, 1996, Geographic location influences coral composition: a comparison between Bali and Sulawesi, Indonesia, Proceedings of the IOC-WESTPAC Third International Science Symposium, Bali, 1994, pp. 280–290.

    Google Scholar 

  • Woodland, D.J., 1983, Zoogeography of the Siganidae (Pisces): an interpretation of distribution and richness patterns, Bulletin of Marine Science 33: 713–717.

    Google Scholar 

  • Woodland, D.J., 1986, Wallace’s Line and the distribution of marine inshore fishes, in: Uyeno, T., Arai, R., Taniuchi, T., and Matsuura, K. (eds), Indo-Pacific Fish Biology. Proceedings of the Second International Conference on Indo-Pacific Fishes, Ichtyological Society of Japan, Tokyo, pp. 453–460.

    Google Scholar 

  • Woodroffe, C.D. and Grindrod, J., 1991, Mangrove biogeography: the role of Quaternary environmental and sea-level change, Journal of Biogeography 18: 479–492.

    Google Scholar 

  • Wörheide, G., Hooper, J.N.A., and Degnan, B.M., 2002, Phylogeography of western Pacific Leucetta ‘chagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia), Molecular Ecology 11: 1753–1768.

    PubMed  Google Scholar 

  • Worm, B., Lotze, H.K., and Myers, R.A., 2003, Predator diversity hotspots in the blue ocean, Proceedings of the National Academy of Sciences, USA 100: 9884–9888.

    Google Scholar 

  • Worm, B., Sandow, M., Oschlies, A., Lotze, H.K., and Myers, R.A., 2005, Global patterns of predator diversity in the open oceans, Science 309: 1365–1369.

    CAS  PubMed  Google Scholar 

  • Wyrtki, K., 1961, Scientific results of marine investigations of the South China Sea and the Gulf of Thailand. Physical oceanography of the Southeast Asian Waters, Naga Reports 2: 1–195.

    Google Scholar 

  • Yamano, H., 2002, Sensitivity of reef flats and reef islands to sea-level change, Proceedings Ninth International Coral Reef Symposium, Bali, 2000, 2: 1193–1197.

    Google Scholar 

  • Zhang, Q. and Zhang, Y., 1986, The fish fauna of Taiwan Strait, in: Uyeno, T., Arai, R., Taniuchi, T., and Matsuura, K. (eds), Indo-Pacific Fish Biology. Proceedings of the Second International Conference on Indo-Pacific Fishes, Ichtyological Society of Japan, Tokyo, pp. 465–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hoeksema, B.W. (2007). Delineation of the Indo-Malayan Centre of Maximum Marine Biodiversity: The Coral Triangle. In: Renema, W. (eds) Biogeography, Time, and Place: Distributions, Barriers, and Islands. Topics In Geobiology, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6374-9_5

Download citation

Publish with us

Policies and ethics