Advertisement

Proteases of the Renin-Angiotensin System in Human Acute Pancreatitis

  • R. Pezzilli
  • L. Fantini
Part of the Proteases in Biology and Disease book series (PBAD, volume 7)

Keywords

Acute Pancreatitis Acinar Cell Acute Pancreatitis Pancreatic Acinar Cell AR42J Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulos GK, Kostopoulos P, Tsiakos S, Margantinis G, Arvanitidis D., 2003, Fulminant pancreatitis associated with ramipril therapy. Pancreas. 27: 278–279.PubMedCrossRefGoogle Scholar
  2. Balldin G, Eddeland A, Ohlsson K., 1981, Studies on the role of the plasma protease inhibitors on in vitro C3 activation and in acute pancreatitis. Scand J Gastroenterol. 16: 603–609.PubMedCrossRefGoogle Scholar
  3. Barnhardt DC, Sarosi GA, Romanchuk G Jr, Mulholland MW., 1999, Calcium signaling induced by angiotensin II in the pancreatic acinar cell line AR42J. Pancreas. 18: 189–196.CrossRefGoogle Scholar
  4. Berry C, Hamilton CA, Brosnan J, Magill FG, Berg GA, McMurray JJV, Dominiczak AF., 2000, Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation. 101: 2206–2212.PubMedGoogle Scholar
  5. Bockman DE., 1997, Morphology of the exocrine pancreas related to pancreatitis. Microsc Res Tech. 37: 509–519.PubMedCrossRefGoogle Scholar
  6. Bottari SP, King IN, Reichlin S, Dahlstrom I, Lydon N, De Gasparo M., 1992, The AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun. 183: 206–211.PubMedCrossRefGoogle Scholar
  7. Bradley EL 3rd., 1993, A clinically based classification system for acute pancreatitis. Summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13, 1992. Arch Surg. 128: 586–590.PubMedGoogle Scholar
  8. Chan WP, Fung ML, Nobiling R, Leung PS, 2000, Activation of local renin-angiotensin system by chronic hypoxia in rat pancreas. Mol Cell Endocrinol. 160: 107–114.PubMedCrossRefGoogle Scholar
  9. Chappell MC, Milsted A, Diz DI, Brosnihan KB, Ferrario CM., 1991, Evidence for an intrinsic angiotensin system in the canine pancreas. J Hypertens. 9: 751–759.PubMedCrossRefGoogle Scholar
  10. Chappell MC, Diz DI, Jacobsen DW., 1992a, Pharmacological characterization of angiotensin II binding sites in the canine pancreas. Peptides. 13: 311–318.Google Scholar
  11. Chappell MC, Jacobsen DW, Tallant EA., 1992b, Glucocorticoid regulation of angiotensin II receptors in pancreatic acinar AR42J cells. Growth Factors, Peptides, Receptors. 7: 66.Google Scholar
  12. Chappell MC, Bosch SM, Hansen BC, Ferrario CM, Diz DI., 1994a, Differential expression of AT2 angiotensin II receptors in the primate and rat pancreas. J Hypertens. 12: S181.Google Scholar
  13. Chappell MC, Bosch SM, Hansen BC, Ferrario CM, Diz DI., 1994b, Angiotensin II receptor subtype expression in the primate pancreas. Am J Hypertens. 7: 94A.Google Scholar
  14. Chappell MC, Jacobsen DW, Tallant EA., 1995, Characterization of angiotensin II receptor subtypes in pancreatic acinar AR42J cells. Peptides. 16: 741–747.PubMedCrossRefGoogle Scholar
  15. Chappell MC, Iyer SN, Diz DI, Ferrario CM., 1998, Antihypertensive effects of angiotensin-(1-7). Braz J Med Biol Res. 31: 1205–1212.PubMedCrossRefGoogle Scholar
  16. Chappell MC, Tallant EA, Diz DI, Ferrario CM., 2000, The renin-angiotensin system and cardiovascular homeostasis. In Drugs, Enzymes and Receptors of the Renin-Angiotensin System: Celebrating a Century of Discovery. (A. Husain, and R.M. Graham, eds.), Harwood Academic Publishers, Amsterdam, pp 3–22.Google Scholar
  17. Chappell MC, Diz DI, Gallagher PE, 2001, The renin-angiotensin system and the exocrine pancreas. JOP. 2: 33–39.PubMedGoogle Scholar
  18. Cheng RM, Mamdani M, Jackevicius CA, Tu K., 2003, Association between ACE inhibitors and acute pancreatitis in the elderly. Ann Pharmacother. 37: 994–998.PubMedCrossRefGoogle Scholar
  19. Chiari H., 1896, Uber die Selbstverdauung des menschlichen Pankreas. Z Heilk. 17: 69–96.Google Scholar
  20. De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger TH., 2000, The angiotensin II receptors. Pharmacol Rev. 52: 415–472.PubMedGoogle Scholar
  21. Dinarello CA., 1996a, Biologic basis for interleukin-1 in disease. Blood. 87: 2095–2147.Google Scholar
  22. Dinarello CA., 1996b, Cytokines as mediators in the pathogenesis of septic shock. Curr Top Microbiol Immunol. 216: 133–165.Google Scholar
  23. Ethridge RT, Hashimoto K, Chung DH, Ehlers RA, Rajaraman S, Evers BM., 2002, Selective inhibition of NF-kappaB attenuates the severity of cerulein- induced acute pancreatitis. J Am Coll Surg. 195: 497–505.PubMedCrossRefGoogle Scholar
  24. Fallon MB, Gorelick FS, Anderson JM, Mennone A, Saluja A, Steer ML., 1995, Effect of cerulein hyperstimulation on the paracellular barrier of rat exocrine pancreas. Gastroenterology. 108: 1863–1872.PubMedCrossRefGoogle Scholar
  25. Fernandez-Alfonso MS, Gonzalez C., 1999, Nitric oxide and the renin-angiotensin system: is there a physiological interplay between the system? J Hypertens. 17: 1355–1361.PubMedCrossRefGoogle Scholar
  26. Fishel RS, Eisenberg S, Shai SY, Redden RA, Bernstein KE, Berk BC., 1995, Glucocorticoids induce angiotensin-converting enzyme expression in vascular smooth muscle. Hypertension. 25: 343–349.PubMedGoogle Scholar
  27. Fishman MP, Melton DA., 2002, Pancreatic lineage analysis using a retroviral vector in embryonic mice demonstrates a common progenitor for endocrine and exocrine cells. Int J Dev Biol. 46: 201–207.PubMedGoogle Scholar
  28. Foitzik T, Hotz HG, Eibl G, Buhr HJ., 2000, Experimental models of acute pancreatitis: are they suitable for evaluating therapy? Int J Colorectal Dis. 15: 127–135.PubMedCrossRefGoogle Scholar
  29. Ghiani BU, Masini MA., 1995, Angiotensin II binding sites in the rat pancreas and their modulation after sodium loading and depletion. Comp Biochem Physiol A Physiol. 111: 439–444.PubMedCrossRefGoogle Scholar
  30. Granger D, Grisham M, Kvietys P., 1994, Mechanisms of microvascular injury. In: Physiology of the Gastrointestinal Tract (L.R. John, ed.), Raven Press, New York, pp 1693–722.Google Scholar
  31. Greenstein RJ, Krakoff LR, Felton K., 1987, Activation of the renin system in acute pancreatitis. Am J Med. 82: 401–404.PubMedCrossRefGoogle Scholar
  32. Griesbacher T., 2000, Kallikrein-kinin system in acute pancreatitis: potential of B(2)-bradykinin antagonists and kallikrein inhibitors. Pharmacology. 60: 113–120.PubMedCrossRefGoogle Scholar
  33. Gullo L, Pezzilli R, Priori P, Baldoni F, Paparo F, Mattioli G., 1987, Pure pancreatic juice collection over 24 consecutive hours. Pancreas. 2: 620–623.PubMedCrossRefGoogle Scholar
  34. Guo DF, Uno S, Ishihata A, Nakamura N, Inagami T., 1995, Identification of a cis-acting glucocorticoid responsive element in the rat angiotensin II type 1A promoter. Circ Res. 77: 249–257.PubMedGoogle Scholar
  35. Han B, Logsdon CD., 2000, CCK stimulates mob-1 expression and NF-kappaB activation via protein kinase C and intracellular Ca(2 ). Am J Physiol Cell Physiol. 278: C344–C351.PubMedGoogle Scholar
  36. Harding JW, Wright JW, Swanson GN, Hanesworth JM, Krebs LT., 1994, AT4 receptors: specificity and distribution. Kidney Int. 46: 1510–1512.PubMedCrossRefGoogle Scholar
  37. Hofbauer B, Saluja AK, Lerch MM, Bhagat L, Bhatia M, Lee HS, Frossard JL, Adler G, Steer ML., 1998, Intra-acinar cell activation of trypsinogen during caerulein-induced pancreatitis in rats. Am J Physiol. 275: G352–G362.PubMedGoogle Scholar
  38. Ip SP, Che CT, Leung PS., 2001, Association of free radicals and the tissue renin-angiotensin system: prospective effects of Rhodiola, a genus of Chinese herb, on hypoxia-induced pancreatic injury. JOP. 2: 16–25.PubMedGoogle Scholar
  39. Ip SP, Tsang SW, Wong TP, Che CT, Leung PS., 2003, Saralasin, a nonspecific angiotensin II receptor antagonist, attenuates oxidative stress and tissue injury in cerulein-induced acute pancreatitis. Pancreas. 26: 224–229.PubMedCrossRefGoogle Scholar
  40. Iyer SN, Ferrario CM, Chappell MC., 1998, Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension. 31: 356–361.PubMedGoogle Scholar
  41. Iyer SN, Yamada K, Diz DI, Ferrario CM, Chappell MC., 2000, Evidence that prostaglandins mediate the antihypertensive actions of angiotensin-(1-7) during chronic blockade of the renin-angiotensin system. J Cardiovasc Pharmacol. 36: 109–117.PubMedCrossRefGoogle Scholar
  42. Janiak P, Pillon A, Prost JF, Vilaine JP., 1992, Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension. 20: 737–745.PubMedGoogle Scholar
  43. Jungermann J, Lerch MM, Weidenbach H, Lutz MP, Kruger B, Adler G., 1995, Disassembly of rat pancreatic acinar cell cytoskeleton during supramaximal secretagogue stimulation. Am J Physiol. 268: G328–G338.PubMedGoogle Scholar
  44. Kanbay M, Korkmaz M, Yilmaz U, Gur G, Boyacioglu S., 2004, Acute pancreatitis due to ramipril therapy. Postgrad Med J. 80: 617–618.PubMedCrossRefGoogle Scholar
  45. Kimura K, Shimosegawa T, Sasano H, Abe R, Satoh A, Masamune A, Koizumi M, Nagura H, Toyota T., 1998, Endogenous glucocorticoids decrease the acinar cell sensitivity to apoptosis during cerulein pancreatitis in rats. Gastroenterology. 114: 372–381.PubMedCrossRefGoogle Scholar
  46. Knoefel WT, Kollias N, Warshaw AL, Waldner H, Nishioka NS, Rattner DW., 1994, Pancreatic microcirculatory changes in experimental pancreatitis of graded severity in rat. Surgery. 116: 904–913.PubMedGoogle Scholar
  47. Kruger B, Albrecht E, Lerch MM., 2000, The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol. 157: 43–50.PubMedGoogle Scholar
  48. Kuno A, Yamada T, Masuda K, Ogawa K, Sogawa M, Nakamura S, Nakazawa T, Ohara H, Nomura T, Joh T, Shirai T, Itoh M., 2003, Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology. 124: 1010–1019.PubMedCrossRefGoogle Scholar
  49. Laitio M, Lev R, Orlic D., 1974, The developing human fetal pancreas: an ultrastructural and histochemical study with special reference to exocrine cells. J Anat. 117: 619–634.PubMedGoogle Scholar
  50. Lasson A, Ohlsson K., 1986, Consumptive coagulopathy, fibrinolysis and protease-antiprotease interactions during acute human pancreatitis. Thromb Res. 41: 167–183.PubMedCrossRefGoogle Scholar
  51. Leung PS, Chan HC, Fu LXM, Wong PYD., 1997, Localization of angiotensin II receptor subtypes AT1 and AT2 in the pancreas of rodents. J Endocrinol. 153: 269–274.PubMedCrossRefGoogle Scholar
  52. Leung PS, Chan WP, Wong TP, Sernia C., 1999, Expression and localization of the renin-angiotensin system in the rat pancreas. J Endocrinol. 160: 13–19.PubMedCrossRefGoogle Scholar
  53. Leung PS, Chan WP, Nobiling R., 2000, Regulated expression of pancreatic renin-angiotensin system in experimental pancreatitis. Mol Cell Endocrinol. 166: 121–128.PubMedCrossRefGoogle Scholar
  54. Leung PS, Carlsson PO., 2001, Tissue renin-angiotensin system: its expression, localization, regulation and potential role in the pancreas. J Mol Endocrinol. 26: 155–164.PubMedCrossRefGoogle Scholar
  55. Lowry SF., 1993, Cytokine mediators of immunity and inflammation. Arch Surg. 128: 1235–1241.PubMedGoogle Scholar
  56. Mercurio F, Manning AM., 1999, NF-kappaB as a primary regulator of the stress response. Oncogene. 18: 6163–6171.PubMedCrossRefGoogle Scholar
  57. Norman J., 1998, The role of cytokines in the pathogenesis of acute pancreatitis. Am J Surg. 175: 76–83.PubMedCrossRefGoogle Scholar
  58. Otani T, Chepilko SM, Grendell JH, Gorelick FS., 1998, Codistribution of TAP and the granule membrane protein GRAMP-92 in rat caerulein-induced pancreatitis. Am J Physiol. 275: G999–G1009.PubMedGoogle Scholar
  59. Parekh AB., 2000, Calcium signaling and acute pancreatitis: specific response to a promiscuous messenger. Proc Natl Acad Sci USA. 97: 12933–12934.PubMedCrossRefGoogle Scholar
  60. Patel AG, Toyama MT, Nguyen TN, Cohen GA, Ignarro LJ, Reber HA, Ashley SW., 1995, Role of nitric oxide in the relationship of pancreatic blood flow and exocrine secretion in cats. Gastroenterology. 108: 1215–1220.PubMedCrossRefGoogle Scholar
  61. Pezzilli R, Billi P, Miniero R, Barakat B., 1997, Serum interleukin-10 in human acute pancreatitis. Dig Dis Sci. 42: 1469–1472.PubMedCrossRefGoogle Scholar
  62. Pezzilli R, Billi P, Morselli-Labate AM., 1998, Severity of acute pancreatitis: relationship with etiology, sex and age. Hepatogastroenterology. 45: 1859–1864.PubMedGoogle Scholar
  63. Pezzilli R, Ceciliari R, Corinaldesi R., 2004, The pathogenesis of acute pancreatitis: from the basic research to the bedside. Osp Ital Chir. 10: 314–323.Google Scholar
  64. Pezzilli R, Barakat B, Fantini L, Timpano A, Morselli Labate AM, Corinaldesi R., 2006, The plasma renin-angiotensin system in human acute pancreatitis. Dig Liv Dis. 38: S88.CrossRefGoogle Scholar
  65. Raraty M, Ward J, Erdemli G, Vaillant C, Neoptolemos JP, Sutton R, Petersen OH., 2000, Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. Proc Natl Acad Sci USA. 97: 13126–13131.PubMedCrossRefGoogle Scholar
  66. Servant G, Dudley DT, Escher E, Guillemette G., 1994, The marked disparity between the sizes of angiotensin type 2 receptors from different tissues is related to different degrees of N-glycosylation. Mol Pharmacol. 45: 1112–1118.PubMedGoogle Scholar
  67. Steinle AU, Weidenbach H, Wagner M, Adler G, Schmid RM., 1999, NF-kappaB/Rel activation in cerulein pancreatitis. Gastroenterology. 116: 420–430.PubMedCrossRefGoogle Scholar
  68. Tahiri-Jouti N, Cambillau C, Viguerie N, Vidal C, Buscail L, Laurent NS, Vaysse N, Susini C., 1992, Characterization of a membrane tyrosine phosphatase in AR42J cells: regulation by somatostatin. Am J Physiol. 262: G1007–G1014.PubMedGoogle Scholar
  69. Tahmasebi M, Puddefoot JR, Inwang ER, Vinson GP., 1999, The tissue renin-angiotensin system in human pancreas. J Endocrinol. 161: 317–322.PubMedCrossRefGoogle Scholar
  70. Takahasi K, Bardhan S, Kambayashi Y, Shirai H, Inagami T., 1994, Protein tyrosine phosphatase inhibition by angiotensin II in rat pheochromocytoma cells through type 2 receptor, AT2. Biochem Biophys Res Commun. 198: 60–66.PubMedCrossRefGoogle Scholar
  71. Tando Y, Algul H, Wagner M, Weidenbach H, Adler G, Schmid RM., 1999, Caerulein-induced NF-kappaB/Rel activation requires both Ca2 and protein kinase C as messengers. Am J Physiol. 277: G678–G686.PubMedGoogle Scholar
  72. Thanos D, Maniatis T., 1995, NF-kappa B: A lesson in family values. Cell. 80: 529–532.PubMedCrossRefGoogle Scholar
  73. Tsang SW, Ip SP, Wong TP, Che CT, Leung PS., 2003, Differential effects of saralasin and ramiprilat, the inhibitors of renin-angiotensin system, on cerulein-induced acute pancreatitis. Regul Pept. 111: 47–53.PubMedCrossRefGoogle Scholar
  74. Tsang SW, Ip SP, Leung PS., 2004, Prophylactic and therapeutic treatments with AT 1 and AT 2 receptor antagonists and their effects on changes in the severity of pancreatitis. Int J Biochem Cell Biol. 36: 330–339.PubMedCrossRefGoogle Scholar
  75. Uehara S, Honjyo K, Furukawa S, Hirayama A, Sakamoto W., 1989, Role of the kallikrein-kinin system in human pancreatitis. Adv Exp Med Biol. 247B: 643–648.PubMedGoogle Scholar
  76. Whitcomb DC., 1999, Early trypsinogen activation in acute pancreatitis. Gastroenterology. 116: 770–772.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • R. Pezzilli
    • 1
  • L. Fantini
    • 1
  1. 1.Department of Internal Medicine and GastroenterologySant’Orsola-Malpighi HospitalBolognaItaly

Personalised recommendations