Atmospheric Monitoring With Chemical Ionisation Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS) and Future Developments: Hadamard Transform Mass Spectrometry

  • Kevin P. Wyche
  • Christopher Whyte
  • Robert S. Blake
  • Rebecca L. Cordell
  • Kerry A. Willis
  • Andrew M. Ellis
  • Paul S. Monks

Chemical ionisation reaction mass spectrometry (CIR-MS) is a more general version of proton transfer reaction mass spectrometry (PTR-MS) in which alternative chemical ionisation schemes are possible. This concept has been realised in a new instrument based on time-of-fl ight mass spectrometry (TOF-MS) and has been applied to the measurement of a range of trace atmospheric volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) (Blake et al., 2004 and Wyche et al., 2005). Initial results have demonstrated the instrument to be capable of recording the entire mass spectrum in “real time” (ca. 1 min) with sensitivities in the order of 0.1 counts ppbV-1 s-1 in each unit mass channel. This article constitutes a brief overview of the CIR-TOF-MS instrument and several of its applications. A short account is also given of the “next generation” instrument which is under development. This new instrument will combine rapid beam modulation with Hadamard transformation of the detector output and should improve the detection sensitivity by more than an order of magnitude over the current CIR-TOF-MS instrument.

Keywords: Proton transfer reaction mass spectrometry (PTR-MS), chemical ionisation reaction (CIR-MS) mass spectrometry, volatile organic compound, aerosol, Hadamard transform

Keywords

Ozone Aldehyde Oligomer Ketone Alkane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltensperger U., Dommen J., Paulsen D., Alfarra M., Coe R., Fisseha R., Gascho A., Gysel M., Nyeki S., Sax M., Steinbacher M., Prevot A., Sjogren S., and Weingartner E. (2005), Secondary organic aerosols from anthropogenic and biogenic precursors, Faraday Discuss., 130, 265–278.CrossRefGoogle Scholar
  2. Blake R.S., Whyte C., Hughes C.O., Ellis A.M., and Monks P.S. (2004), Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds, Anal. Chem., 76(13), 3841–3845.CrossRefGoogle Scholar
  3. Blake R.S., Wyche K.P., Ellis A.M., and Monks P.S. (2006), Chemical ionization reaction time-of-flight mass spectrometry: Multi-reagent analysis for determination of trace gas composition, Int. J. Mass Spectrom., 254(1–2), 85–93.Google Scholar
  4. Brock A., Rodriguez N., and Zare R.N. (2000), Characterization of a Hadamard transform time-of-flight mass spectrometer, Rev. Sci. Instrum., 71(3), 1306–1318.CrossRefGoogle Scholar
  5. Hansel A., Jordan A., Holzinger R., Prazeller P., Vogel W., and Lindinger W. (1995), Proton-transfer reaction mass-spectrometry–online trace gas-analysis at the ppb level, Int. J. Mass Spectrom., 150, 609–619.CrossRefGoogle Scholar
  6. Hewitt C.N., Hayward S., and Tani A. (2003), The application of proton transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of volatile organic compounds in the atmosphere, J. Environ. Monitor., 5(1), 1–7.CrossRefGoogle Scholar
  7. Jang M. and Kamens R.M. (2001), Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst, Environ. Sci. Technol., 35, 4758–4766.CrossRefGoogle Scholar
  8. Kalberer M., Sax M., Steinbacher M., Dommen J., Prevot A., Fisseha R., Weingartner E., Frankevich V., Zenobi R., and Baltensperger. (2004), Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659–1662.CrossRefGoogle Scholar
  9. Karl M., Brauers T., Dorn H.P., Holland F., Komenda M., Poppe D., Rohrer F., Rupp L., Schaub A., and Wahner A. (2004), Kinetic study of the OH-isoprene and O3-isoprene reaction in the atmosphere simulation chamber, SAPHIR, Geophys. Res. Lett., 31(5).Google Scholar
  10. Lirk P., Bodrogi F., and Rieder J. (2004), Medical applications of proton transfer reaction-mass spectrometry: Ambient air monitoring and breath analysis, Int. J. Mass Spectrom., 239(2–3), 221–226.Google Scholar
  11. Paulsen D., Dommen J., Kalberer M., Prevot A.S.H., Richter R., Sax M., Steinbacher M., Weingartner E., and Baltensperger U. (2005), Secondary organic aerosol formation by irradiation of 1, 3, 5-trimethylbenzene-NOx-H2O in a new reaction chamber for atmospheric chemistry and physics, Environ. Sci. Technol., 39(8), 2668–2678.CrossRefGoogle Scholar
  12. Smith D., Diskin A.M., Ji Y. F., and Spanel P. (2001), Concurrent use of H3O+, NO+, and O-2(+) precursor ions for the detection and quantification of diverse trace gases in the presence of air and breath by selected ion-flow tube mass spectrometry, Int. J. Mass Spectrom., 209(1), 81–97.CrossRefGoogle Scholar
  13. Spanel P., Ji Y.F., and Smith D. (1997), SIFT studies of the reactions of H3O+, NO+ and O-2(+) with a series of aldehydes and ketones, Int. J. Mass Spectrom., 165, 25–37.CrossRefGoogle Scholar
  14. Wyche K.P., Blake R.S., Willis K.A., Monks P.S. and Ellis A.M. (2005), Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry, Rapid Commun. Mass Spectrom., 19(22), 3356–3362.CrossRefGoogle Scholar
  15. Wyche K.P., Blake R.S., Ellis A.M., Monks P.S., Koppman R., Brauers T., and Apel E. (2006), Technical Note: Performance of chemical ionization reaction time-of-flight mass spectrometry (CIR-TOF-MS) for the measurement of atmospherically significant oxygenated volatile organic compounds, Atmos. Chem. Phys, 7, 609–620.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Kevin P. Wyche
    • 1
  • Christopher Whyte
    • 1
  • Robert S. Blake
    • 1
  • Rebecca L. Cordell
    • 1
  • Kerry A. Willis
    • 1
  • Andrew M. Ellis
    • 1
  • Paul S. Monks
    • 1
  1. 1.Department of ChemistryUniversity of LeicesterUK

Personalised recommendations