Biomonitoring Studies Performed with European Eel Populations from the Estuaries of Minho, Lima and Douro Rivers (NW Portugal)

  • Carlos Gravato
  • Melissa Faria
  • Anabela Alves
  • Joana Santos
  • Lúcia Guilhermino

Contaminants’ presence in the aquatic environment is relevant for the disturbance of the European stocks of diadromic species. The main goal of this study was to compare the biotransformation and oxidant/antioxidant status of yellow eel (Anguilla anguilla) populations from the estuaries of Minho (reference), Lima and Douro (contaminated) Rivers. Comparatively to the values determined in eels from the reference estuary, low total glutathione and reduced glutathione levels associated with high lipid peroxidation levels and benzo(a)pyrene-type metabolites’ concentrations were found in liver from eels collected in the estuary of Lima river. Eels from Douro estuary showed high liver ethoxyresorufi n-O-deethylase, catalase, glutathione peroxidase, total glutathione, reduced glutathione and oxidized glutathione levels associated with low lipid peroxidation and benzo(a)pyrene-type metabolites relatively to fi sh from the reference estuary. The pollution present in the estuaries of Lima and Douro Rivers is causing alterations on biotransformation and antioxidant stress parameters. In addition, Lima estuary eels are exposed to polycyclic aromatic hydrocarbons as indicated by the high levels of metabolites found. Since polycyclic aromatic hydrocarbons interfere with reproductive parameters and increased cytochrome P450 1A1 activity (as found in eels from the Douro estuary) interfere with reproduction, the exposure of eels to pollution in Lima and Douro estuaries may be decreasing their reproductive potential. In addition, energy to face chemical stress may be allocated from processes such as growth and weight increase that are factors determinant for the success of the long migration to the reproduction area. Therefore, pollution may be decreasing the contribution of these populations to the species evolution.

Keywords: Biomonitoring, biomarkers, biotransformation, oxidative stress, Anguilla anguilla


Migration Adduct Neuropathy Sewage NADPH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aas E., Beyer J., and Goksoyr A. (1998), PAH in fish bile detected by fixed wavelength fluorescence. Mar. Environ. Res., 46, 225–228.CrossRefGoogle Scholar
  2. Andersson T., Förlin L., Härdig J., and Larsson A. (1988), Physiological disturbances in fish living in coastal waters polluted with bleached kraft pulp mill effluents. Can. J. Fish. Aquat. Sci., 45, 1525–1536.CrossRefGoogle Scholar
  3. Baker M.A., Cerniglia G.J., and Zaman A. (1990), Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Ann. Biochem., 190, 360–365.CrossRefGoogle Scholar
  4. Bird R.P., and Draper A.H. (1984), Comparative studies on different methods of malondyhaldehyde determination. Methods Enzymol., 90, 105–110.Google Scholar
  5. Bradford M. (1976), A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem., 72, 248–254.CrossRefGoogle Scholar
  6. Bucher F., and Hofer R. (1990), Effects of domestic wastewater on serum enzyme activities of brown trout (Salmo trutta). Comp. Biochem. Physiol., 97, 381–385.Google Scholar
  7. Buet A., Banas D., Vollaire Y., Coulet E., and Roche H. (2006), Biomarker responses in European eel (Anguilla anguilla) exposed to persistent organic pollutants. A field study in the Vaccarès lagoon (Camargue, France). Chemosphere, 65, 1846–1858.CrossRefGoogle Scholar
  8. Burke M.D., and Mayer R.T. (1974), Ethoxyresorufin: Direct fluorimetric assay of a microsomal-O-deethylation which is preferentially inducible by 3-methylcholantrene. Drug. Metab. Dispos., 2, 583–588.Google Scholar
  9. Cairrão E., Couderchet M., Soares A.M.V.M., and Guilhermino L. (2004), Glutathione-S-transferase activity of Fucus spp. as a biomarker of environmental contamination. Aquat. Toxicol., 70, 277–286.CrossRefGoogle Scholar
  10. Cajaraville M.P., Bebianno M.J., Blasco J., Porte C., Sarasquete C., and Viarengo A. (2000), The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: A practical approach. Sci. Total Environ., 247, 201–212.CrossRefGoogle Scholar
  11. Castro M., Santos M.M., Monteiro N.M., and Vieira N. (2004), Measuring lysosomal stability as an effective tool for marine coastal environmental monitoring. Mar. Environ. Res., 58, 741–745.CrossRefGoogle Scholar
  12. Clairborne A. (1985), Catalase activity. In: Greenwald R.A. (Ed.). CRC Handbook of Methods in Oxygen Radical Research (pp. 283–284). Boca Raton, FL: CRC Press.Google Scholar
  13. Colombo G., and Grandi G. (1995), Sex differentiation in the European eel: Histological analysis of effects of sex steroids on the gonad. J. Fish Biol., 47, 394–413.CrossRefGoogle Scholar
  14. Cribb A.E., Leeder J.S., and Spielberg S.P. (1989), Use of a microplate reader in an assay of glutathione reductase using 5, 5’-dithiobis(2-nitrobenzoic acid). Ann. Biochem., 183, 195–196.CrossRefGoogle Scholar
  15. Doyotte A., Mitchelmore C.L., Rinisz D., McEvoy J., Livingstone D.R., and Peters L.D. (2001), Hepatic 7-ethoxyresorufin O-deethylase activity in the eel (Anguilla anguilla) from the Thames estuary and comparisons with other United Kingdom estuaries. Mar. Pollut. Bull., 42, 1313–1322.CrossRefGoogle Scholar
  16. Fenet H., Casellas C., and Bontoux J. (1998), Laboratory and field-caging studies on hepatic enzymatic activities in European eel and rainbow trout. Ecotox. Environ. Saf., 40, 137–143.CrossRefGoogle Scholar
  17. Ferreira M., Antunes P., Gil O., Vale C., and Reis-Henriques M.A. (2004), Organochlorine contaminants in flounder (Platichthys flesus) and mullet (Mugil cephalus) from Douro estuary, and their use as sentinel species for environment monitoring. Aquat. Toxicol., 69, 347–357.CrossRefGoogle Scholar
  18. Ferreira M., Moradas-Ferreira P., and Reis-Henriques M.A. (2006), The effect of long-term depuration on phase I and phase II biotransformation in mullets (Mugil cephalus) chronically exposed to pollutants in River Douro Estuary, Portugal. Mar. Environ. Res., 61, 326–338.CrossRefGoogle Scholar
  19. Filho D.W. (1996), Fish antioxidant defences—A comparative approach. Braz. J. Med. Biol. Res., 29, 1735–1742.Google Scholar
  20. Filho D.W., Tribess T., Gáspari C., Cláudio F.D., Torres M.A., and Magalhães A.R.M. (2001), Seasonal changes in antioxidant defenses of the digestive gland of the brown mussel (Perna perna). Aquaculture, 203, 149–158.CrossRefGoogle Scholar
  21. Flohé L., and Ötting F. (1984), Superoxide dismutase assays. Method. Enzymol., 105, 93–104.CrossRefGoogle Scholar
  22. Gagnon M.M., and Holdway D.A. (2000), EROD induction and biliary metabolite excretion following exposure to the water accommodated fraction of crude oil and to chemically dispersed crude oil. Arch. Environ. Contam. Toxicol., 38, 70–77.CrossRefGoogle Scholar
  23. Griffith O.W. (1980), Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinyl-pyridine. Ann. Biochem., 106, 207–212.CrossRefGoogle Scholar
  24. Habig W.H., Pabst M.J., and Jakoby W.B. (1974), Glutathione-S-transferases, the first enzymatic step in mercapturic acid formation. J. Biol. Chem., 249, 7130–7139.Google Scholar
  25. INAG (2000). Planos das bacias Hidrográficas dos rios Luso-Espanhois-Síntese. Caracterização e Diagnóstico. Instituto da Água, Direcção de serviços de recursos Hídricos, Divisão de recursos Subterrâneos, pp. 398.Google Scholar
  26. Kirby M.F., Matthiessen P., Neall P., Tylor T., Allchin C.R., Kelly C.A., Maxwell D.L., and Thain J.E. (1999), Hepatic EROD activity in flounder (Platichthys flesus) as an indicator of contaminant exposure in English estuaries. Mar. Pollut. Bull., 38, 676–686.CrossRefGoogle Scholar
  27. Langston W.J., Chasman B.S., Burt G.R., Pope N.D., and McEvoy J. (2002), Metallothionein in liver of eels Anguilla anguilla from the Thames estuary: An indicator of environmental quality? Mar. Environ. Res., 53, 263–293.CrossRefGoogle Scholar
  28. Law R.J., Dawes V.J., Woodhead R.J., and Matthiessen P. (1997), Polycyclic aromatic hydrocarbons (PAH) in seawater around England and Wales. Mar. Pollut. Bull., 34, 306–322.CrossRefGoogle Scholar
  29. Lemaire P., and Livingstone D.R. (1993), Pro-oxidant/antioxidant processes and organic xenobiotics interactions in marine organisms, in particular the flounder Platichthys flesus and mussels Mytilus edulis. Trend. Comp. Biochem. Physiol., 1, 1119–1150.Google Scholar
  30. Lin E.L.C., Cormier S.M., and Torsella J.A. (1996), Fish biliary polycyclic aromatic hydrocarbon metabolites estimated by fixed-wavelength fluorescence: Comparison with HPLC-fluorescent detection. Ecotoxicol. Environ. Saf., 35, 16–23.CrossRefGoogle Scholar
  31. Lindström-Seppä P., and Pesonen M. (1986), Biotransformation enzymes in fish as tools for biomonitoring the aquatic environment. Acta Biol. Hung., 37, 85–95.Google Scholar
  32. Livingstone D.R., Mitchelmore C.L., Peters L.D., O’Hara S.C., Shaw J.P., Chesman B.S., Doyotte A., McEvoy J., Ronisz D., Larsson D.G., and Forlin L. (2000), Development of hepatic CYP1A and blood vitellogenin in eel (Anguilla anguilla) for use as biomarkers in the Thames Estuary, UK. Mar. Environ. Res., 50, 367–371.CrossRefGoogle Scholar
  33. Livingstone D.R., Garcia Martinez P., Michel X., Narbonne J.F., O’Hara S., Ribera D., and Winston G.W. (1990), Oxyradical generation as a pollution-mediated mechanism of toxicity in the common mussel, Mytilus edulis L., and other molluscs. Funct. Ecol., 4, 415–424.CrossRefGoogle Scholar
  34. Lyons B.P., Stentiford G.D., Green M., Bignell J., Bateman K., Feist S.W., Goodsir F., Reynolds W.J., and Thain J.E. (2004), DNA adduct analysis and histopathological biomarkers in European flounder (Platichthys flesus) sampled from UK estuaries. Mutat. Res., 552, 177–186.Google Scholar
  35. Matthiessen P., Bifield S., Jarret F., Kirby M.F., Law R.J., McMinn W.R., Sheahan D.A., Thain J.E., and Whale G.F. (1998), An assessment of sediment toxicity in the River Tyne estuary, UK, by means of bioassays. Mar Environ. Res., 45, 1–15.CrossRefGoogle Scholar
  36. Mohandas J., Marshall J.J., Duggins G.G., Horvath J.S., and Tiller D. (1984), Differential distribution of glutathione and glutathione related enzymes in rabbit kidney. Possible implications in analgesic neuropathy. Cancer Res., 44, 5086–5091.Google Scholar
  37. Monteiro M., Quintaneiro C., Morgado F., Soares A.M.V.M., and Guilhermino L. (2005), Characterization of the cholinesterases present in head tissues of the estuarine fish Pomatoschistus microps: Application to biomonitoring. Ecotox. Environ. Saf., 62, 341–347.CrossRefGoogle Scholar
  38. Mucha A.P., Bordalo A.A., and Vasconcelos M.T.S.D. (2004), Sediment quality in the Douro river estuary based on trace metal contents, macrobenthic community and elutriate sediment toxicity test (ESTT). J. Environ. Monit., 6, 585–592.CrossRefGoogle Scholar
  39. Myers M.S., Stehr C.M., Olsen O.P., Johnson L.L., McBain B.B., Chan S.L., and Varanasi U. (1994), Relationships between toxicopathic hepatic lesions and exposure to chemical contaminants in English sole (Pleuronectus vetulus), starry flounder (Platichthys stellatus), and white croaker (Genyonemus lineatus) from selected marine sites on the Pacific coast, USA. Environ. Health Perspect., 102, 200–215.CrossRefGoogle Scholar
  40. Nicolas J.M. (1998), Vitellogenesis in fish and the effects of polycyclic aromatic hydrocarbon contaminants. Aquat. Toxicol., 45, 77–90.CrossRefGoogle Scholar
  41. Ohkawa H. (1979), Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95, 351–358.CrossRefGoogle Scholar
  42. Orbea A., Ortiz-Zarragoitia M., Sole M., Porte C., and Cajaraville M.P. (2002), Antioxidant enzymes and peroxisome proliferation in relation to contaminant body bordens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquat. Toxicol., 58, 75–98.CrossRefGoogle Scholar
  43. Otto D.M.E., Sen C.K., Casley W.L., and Moon T.W. (1997), Regulation of 3, 3’, 4, 4’-tetrachlorobiphenyl induced cytochrome P450 metabolism by thiols in tissues of rainbow trout. Comp. Biochem. Physiol., 117, 29–309.CrossRefGoogle Scholar
  44. Pacheco M., and Santos M.A. (1997), Induction of EROD activity and genotoxic effects by polycyclic aromatic hydrocarbons and resin acids on the juvenile eel (Anguilla anguilla L.). Ecotox. Environ. Saf., 38, 252–259.CrossRefGoogle Scholar
  45. Peña-Llopis S., Pena J.B., Sancho E., Fernández-Vega C., and Ferrando M.D. (2001), Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate. Chemosphere, 45, 671–681.CrossRefGoogle Scholar
  46. Peters L.D., Doyotte A., Mitchelmore C.L., McEvoy J., and Livingstone D.R. (2001), Seasonal variation and estradiol-dependent elevation of Thames estuary eel Anguilla anguilla plasma vitellogenin levels and comparisons with other United Kingdom estuaries. Sci. Total Environ., 279, 137–150.CrossRefGoogle Scholar
  47. Regoli F., and Principato G. (1995), Glutathione, glutathione-dependent and antioxidant enzymes in mussels, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: Implications for the use of biochemical biomarkers. Aquat. Toxicol., 31, 143–164.CrossRefGoogle Scholar
  48. Regoli F., Pellegrini D., Winston G.W., Gorbi S., Giuliani S., Virno-Lamberti C., and Bompadre S. (2002), Application of biomarkers for assessing the biological impact of dredged materials in the Mediterranean: The relationship between antioxidant responses and susceptibility to oxidative stress in the red mullet (Mullus barbatus). Mar. Pollut. Bull., 44, 912–922.CrossRefGoogle Scholar
  49. Regoli F., Winston G.W., Gorbi S., Frenzilli G., Nigro M., Corsi I., and Focardi S. (2003), Integrating enzymatic responses to organic chemical exposure with total oxyradical absorbing capacity and DNA damage in the European eel Anguilla anguilla. Environ. Toxicol. Chem., 22, 2120–2129.CrossRefGoogle Scholar
  50. Roche H., Buet A., Jonot O., and Ramade F. (2000), Organochlorine residues in European eel (Anguilla anguilla), crucian carp (Carassius carassius) and catfish (Ictalurus nebulosus) from Vaccarès lagoon (French National Nature reserve of Camargue)—Effects on some physiological parameters. Aquat. Toxicol., 48, 443–459.CrossRefGoogle Scholar
  51. Rodrigues P., Reis-Henriques M.A., Campos J., and Santos M.M. (2006), Urogenital papilla feminization in male Pomatoschistus minutus from two estuaries in northwestern Iberian Península. Mar. Environ. Res., 62, 258–262.CrossRefGoogle Scholar
  52. Ruddock P.J., Bird D.J., McEvoy J., and Peters L.D. (2003), Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in European eels Anguilla anguilla from United Kingdom estuaries. Sci. Total Environ., 301, 105–117.CrossRefGoogle Scholar
  53. Schlezinger J.J., and Stegeman J.J. (2000), Induction of cytochrome P450 1A in the American eel by model halogenated and non-halogenated aryl hydrocarbon receptor agonists. Aquat. Toxicol., 50, 375–386.CrossRefGoogle Scholar
  54. Solé M. (2000), Assessment of the results of chemical analyses combined with the biological effects of organic pollutants on mussels. Trend. Anal. Chem., 19, 1–9.CrossRefGoogle Scholar
  55. Spies R.B., Rice D.W., and Jr, Felton J. (1988), Effects of organic contaminants on reproduction of the starry flounder Platichthys stellatus in San Francisco Bay, I. Hepatic contamination and mixed-function oxidase (MFO) activity during the reproductive season. Mar. Biol., 98, 181–189.CrossRefGoogle Scholar
  56. Stegeman J.J., and Kloepper-Sams P.J. (1987), Cytochrome P-450 enzymes and monooxygenase activity in aquatic animals. Environ. Health Perspect., 71, 87–95.CrossRefGoogle Scholar
  57. Tietze F. (1969), Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Ann. Biochem., 27, 502–522.CrossRefGoogle Scholar
  58. Torres M.A., Testa C.P., Gáspari C., Masutti M.B., Panitz C.M.N., Curi-Pedrosa R., Almeida E.A., Di Mascio P., and Filho D.W. (2002), Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Mar. Pollut. Bull., 44, 923–932.CrossRefGoogle Scholar
  59. Van der Oost R., Beyer J., and Vermeulen N.P.E. (2003), Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharm., 13, 57–149.CrossRefGoogle Scholar
  60. Vethaak A.D., Jol J.G., Meijboom A., Eggens M.L., ap Reinallt T., Westen P.W., Van de Zande T., Bergman A., Dankens N., Ariese F., Baan R.A., Everts J.M., Opperhuizen A., and Marquenie J.M. (1996), Skin and liver diseases induced in flounder (Platichthys flesus) after long-term exposure to contaminated sediments in large-scale mesocosms. Environ. Health Perspect., 104, 1218–1229.CrossRefGoogle Scholar
  61. Winston G.W., and Di Giulio R.T. (1991), Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol., 19, 137–161.CrossRefGoogle Scholar
  62. Woodhead R.J., Law R.J., and Matthiessen P. (1999), Polycyclic aromatic hydrocarbons (PAH) in surface sediments around England and wales and their possible biological significance. Mar. Pollut. Bull., 38, 773–779.CrossRefGoogle Scholar
  63. Zar J.H. (1996), Biostatistical Analysis. Third Edition. USA: Prentice Hall International, Inc.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Carlos Gravato
    • 1
    • 3
  • Melissa Faria
    • 1
  • Anabela Alves
    • 1
  • Joana Santos
    • 1
  • Lúcia Guilhermino
    • 1
    • 2
  1. 1.Centro Interdisciplinar de Investigação Marinha e Ambiental, Laboratório de EcotoxicologiaUniversidade do PortoPortugal
  2. 2.Departamento de Estudos de Populações, Laboratório de EcotoxicologiaUniversidade do PortoPortoPortugal
  3. 3.Departamento de BiologiaUniversidade de AveiroAveiroPortugal

Personalised recommendations