Remote Sensing of Aerosols by Sunphotometer and Lidar Techniques

  • Anna M. Tafuro
  • F. De Tomasi
  • Maria R. Perrone

Active and passive remote sensing devices such as lidars and sunphotometers, respectively, are peculiar tools to follow the spatial and temporal evolution of aerosol loads and get complementary data to properly characterize aerosol optical and microphysical properties. A XeF-based Raman lidar is routinely used at the physics department of Lecce’s University (40° 20 ′N, 18° 6 ′E), to monitor aerosol vertical distributions and characterize aerosol optical properties by the vertical profiles of the backscatter and extinction coefficient, lidar ratio, and depolarization ratio. In addition, a sun/sky radiometer operating within AERONET is used to supplement lidar measurements and better infer aerosol types and properties by columnar values of the particle size distribution, the real and imaginary refractive index, the single scattering albedo and the Angstrom exponent (Å). The main objective of this paper is to provide some results on the spatial and temporal evolution of the aerosol properties over south-east Italy, in the central-east Mediterranean basin, by using lidar and sunphotometer measurements. Specifi cally, results on the characterization of the aerosol load from July 18 to July 21, 2005 are reported and particular attention is devoted to the Sahara dust outbreak that has occurred over south-east Italy on July 18 and 19, 2005.

Keywords: Aerosols, lidar, remote sensing, sunphotometer

Keywords

Biomass Burning Dust Europe Advection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann J. (1998), The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study, J. Atmos. Ocean. Technol., 15, 1044–1050.CrossRefGoogle Scholar
  2. Ansmann A., Wagner F., Althausen D., Muller D., Herber A., and Wandinger U. (2001), European pollution outbreaks during ACE 2, Part I: Alofted aerosol plumes observed with Raman lidar at the Portuguese coast, J. Geophys. Res., 106 D, 20723–20733.Google Scholar
  3. Barnaba F., De Tomasi F., Gobbi G.P., Perrone M.R., and Tafuro A. (2004), Extinction versus backscatter relationships for lidar applications at 351 nm: Maritime and desert aerosol simulations and comparison with observations, Atmos. Res., 70, 229–259.CrossRefGoogle Scholar
  4. Bösenberg J., et al. (2003), A European aerosol research lidar network to establish an aerosol climatology, MPI-Report 348, Max-Planck-Institut für Meteorologie, Hamburg, Germany.Google Scholar
  5. De Tomasi F. and Perrone M.R. (2003), Lidar measurements of tropospheric water vapor and aerosol profiles over south-eastern Italy, J. Geophys. Res., 108, 4286–4297.CrossRefGoogle Scholar
  6. Fernald F.G. (1984), Analysis of atmospheric lidar observations: Some comments, Appl. Opt., 23, 652–653.CrossRefGoogle Scholar
  7. Gobbi G.P., Barnaba F., Giorgi R., and Santacasa A. (2000), Altitude-resolved properties of a Saharan-dust event over the Mediterranean, Atmos. Environ., 34, 5119–5127.CrossRefGoogle Scholar
  8. Haywood J.M. and Shine K.P. (1997), Multi-spectral calculations of the direct radiative forcing of the tropospheric sulphate and soot aerosols using a column model, Q. J. R. Meteorol. Soc., 123, 1907–1930.CrossRefGoogle Scholar
  9. Holben B.N., et al. (1998), AERONET–A federate instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16.CrossRefGoogle Scholar
  10. Kaufman Y.J., Tanré D., and Boucher O. (2002), A satellite view of aerosols in the climate system, Nature., 419, 215–223.CrossRefGoogle Scholar
  11. Lelieveld J., et al. (2002), Global air pollution crossroads over the Mediterranean, Science, 298, 794–799.CrossRefGoogle Scholar
  12. Matthias V. and Bösenberg J. (2002), Aerosol climatology for the planetary boundary layer derived from regular lidar measurements, Atmos. Res., 63, 221–245.CrossRefGoogle Scholar
  13. Mattis I., Ansmann A., Müller D., Wandinger U., and Althausen D. (2002), Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust, Geophys. Res. Lett., 29, No. 9, 20.1–20.4.CrossRefGoogle Scholar
  14. Mishchenko M.I., Travis L.D., Kahn R.A., and West R.A. (1997), Modeling phase functions for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, J. Geophys. Res., 102, 16, 831–16, 847.Google Scholar
  15. Nakajima T., Sekiguchi M., Takemura T., Uno I., Higurashi A., Kim D., Sohn B-.J., Oh S. N., Nakajima T.Y., Ohta S., Okada I., Takamura T., and Kawamoto K. (2003), Significance of direct and indirect radiative forcings of aerosols in the East China Sea region, J. Geophys. Res., 108, 8658, DOI 10.1029/2002JD003261.CrossRefGoogle Scholar
  16. Perrone M.R., Barnaba F., De Tomasi F., Gobbi G.P., and Tafuro A.M. (2004), Imaginary refractive-index effects on desert-aerosol extinction versus backscatter relationships at 351 nm: Numerical computations and comparison with Raman lidar measurements, Appl. Opt., 29, 5531–5541.CrossRefGoogle Scholar
  17. Perrone M.R., Santese M., Tafuro A.M., Holben B., and Smirnov A. (2005), Aerosol load characterization over South-East Italy by one year of AERONET sun-photometer measurements, Atmos. Res., 75, 111–133.CrossRefGoogle Scholar
  18. Tafuro A.M., Barnaba F., De Tomasi F., Perrone M.R., and Gobbi G.P. (2006), Saharan dust particle properties over the central Mediterranean, Atmos. Res., 81, 67–93.CrossRefGoogle Scholar
  19. Zerefos C.S., Ganev K., Kourtidis K., Tzortziou M., Vasaras A., and Syrakov E. (2000), On the origin of SO2 above northern Greece, Geophys. Res. Lett., 27, 365–368.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Anna M. Tafuro
    • 1
  • F. De Tomasi
    • 1
  • Maria R. Perrone
    • 1
  1. 1.CNISM, Dipartimento di FisicaUniversità di LecceItaly

Personalised recommendations