Skip to main content

An Innovative Approach to Optical Measurement of Atmospheric Aerosols—Determination of the Size and the Complex Refractive Index of Single Aerosol Particles

  • Chapter
  • 2387 Accesses

As a result of the intrinsic nature of elastic light scattering aerosol particles, the non-monotonic size dependence of the scattered light intensity infl uences the function of most single optical particle counters and spectrometers. In order to tackle the problem of the varying response of single particle spectrometers when refractive indices of aerosol change, we developed a system utilizing two laser illumination sources with different wavelengths (533 nm and 685 nm) and four detectors collecting the forward and backward scattered light from both illuminating beams. The new method aims to determine the size and refractive index of particles typically occurring in the atmosphere. We successfully tested this new method numerically for its capability to simultaneously determine particle size in the range from 0.1 to 10 μm, the real part of the refractive index spanning from 1.1 to 2, and the imaginary part of refractive index between 0 and 1. The fi rst experimental results obtained with the prototype of the spectrometer verify the capability of the technique for accurate size measurement and real-time differentiation between non-absorbing and absorbing aerosol particles.

Keywords: Atmospheric aerosols, optical measurement, particle size, refractive index

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnard J.C. and Harrison L.C. (1988), Monotonic responses from monochromatic optical particle counters, Appl. Opt., 27, 584–592.

    Article  CAS  Google Scholar 

  • Bohren C.F. and Hufman D.R. (1983),Absorption and Scattering of Light by Small Particles., Wiley Interscience Publication, New York.

    Google Scholar 

  • Chang H., Okuyama K., and Szymanski W.W. (2003), Experimental evaluation of optical properties of porous silica/carbon composite particles, Aerosol Sci. Technol., 37, 735–751.

    Article  CAS  Google Scholar 

  • Cooke D.D. and Kerker M. (1975), Response calculations for light scattering aerosol particle counters, Appl. Opt., 14, 734–745.

    Article  Google Scholar 

  • Czitrovsky A. and Jani P. (1993), New design for a light scattering airborne particle counter and its applications, Opt. Eng., 32, 2557–2582.

    Article  Google Scholar 

  • Dick W.D., Sachweh B.A., and McMurry P.H. (1996), Distinction of coal dust particles from liquid droplets by variations in azimuthal light scattering, Appl. Occup. Environ. Hyg., 11(7), 637–646.

    CAS  Google Scholar 

  • Dick W.D., McMurry P.H., and Bottiger J.R. (1994), Size and composition dependent response of the DAWN-A multi-angle single particle detector, Aerosol Sci. Technol., 20, 345–355.

    Article  Google Scholar 

  • Garvey D.M. and Pinnick R.G. (1983), Response characteristics of the particle measuring systems active scattering aerosol spectrometer probe, Aerosol Sci. Technol., 2, 477–488.

    Article  CAS  Google Scholar 

  • Hanusch T. and Jaenicke R. (1993), Simulation of optical particle counter FSSP-100. Consequences for size distribution measurements, J. Aerosol Sci., 23, 112–120.

    Google Scholar 

  • Hering S. and McMurry P.H. (1991), Response of a PMS LAS-X laser optical particle counter to monodisperse atmospheric aerosols, Atmos. Environ., 25A, 463–461.

    Google Scholar 

  • Hinds W.C. and Kraske G. (1986), Performance of PMS model LAS-X optical particle counter, J. Aerosol Sci., 17, 67–72.

    Article  Google Scholar 

  • Hogan A., Ahmed N., Black J., and Barnard S. (1985), Some physical properties of black aerosol, J. Aerosol Sci., 16, 391–396.

    Article  CAS  Google Scholar 

  • Kerker M. (1997), Light scattering instrumentation for aerosol studies and historical overview, Aerosol Sci. Technol., 27, 522–535.

    Article  CAS  Google Scholar 

  • Liu B.Y.H. and Pui D.Y.H. (1975), On the performance of the electrical aerosol analyzer, J. Aerosol Sci., 6, 249–264.

    Article  Google Scholar 

  • Liu B.Y.H., Szymanski W.W., and Pui D.Y.H. (1983), Response of laser optical particle counter to transparent and light absorbing particles, ASHRAE Trans., 92, 518–527.

    Google Scholar 

  • Liu Y. and Daum P.H. (2000), The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters, J. Aerosol Sci., 31, 945–956.

    Article  CAS  Google Scholar 

  • Liu B.Y.H., Szymanski W.W., and Ahn K.H. (1985), Aerosol size distribution measurement by laser and white light optical particle counters, J. Environ. Sci., 28, 19–25.

    CAS  Google Scholar 

  • McMurry P.H., Zhang X. and Lee C.-T. (1996), Issues in aerosol measurement for optics assessment, J. Geophys. Res., 101, 19189–19195.

    Article  CAS  Google Scholar 

  • Nagy A., Szymanski W.W., Golczewski A., Gál P., and Czitrovszky A. (2005), Effects of the evaluation table dimensions on the DWOPS sizing accuracy, In: Proceedings of the European Aerosol Conference EAC2005 Ghent, Belgium.

    Google Scholar 

  • Pinnick R.G., Pendleton J.D., and Videen G. (2000), Characteristics of the particle measuring systems active scattering aerosol spectrometer probes, Aerosol Sci. Technol., 33, 334–352.

    Article  CAS  Google Scholar 

  • Renliang Xu. (2000), Particle characterization: Light scattering methods, 13, 432 p, Kluwer, Dordrecht.

    Google Scholar 

  • Szymanski W.W. and Liu B.Y.H. (1986), On the sizing accuracy of laser optical particle counters, Part Charact., 3, 1–8.

    Article  CAS  Google Scholar 

  • Szymanski W.W., Nagy A., Czitrovszky A., and Jani P. (2002), A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density, Meas. Sci. Tech., 13, 303–307.

    Article  CAS  Google Scholar 

  • Szymanski W.W., Ciach T., Podgorski A., and Gradon L. (2000), Optimized response characteristics of an optical particle spectrometer for size measurement of aerosols, J. Quant. Spectrosc. Radiat. Transf., 64, 75–85.

    Article  CAS  Google Scholar 

  • Wyatt P.J. (1998), Submicrometer particle sizing by multi-angle light scattering following fractionation, J. Colloid Interface Sci., 197, 9–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Szymanski, W.W., Golczewski, A., Nagy, A., Gál, P., Czitrovszky, A. (2008). An Innovative Approach to Optical Measurement of Atmospheric Aerosols—Determination of the Size and the Complex Refractive Index of Single Aerosol Particles. In: Kim, Y.J., Platt, U. (eds) Advanced Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6364-0_13

Download citation

Publish with us

Policies and ethics