An Innovative Approach to Optical Measurement of Atmospheric Aerosols—Determination of the Size and the Complex Refractive Index of Single Aerosol Particles

  • Wladyslaw W. Szymanski
  • Artur Golczewski
  • Attila Nagy
  • Peter Gál
  • Aladar Czitrovszky

As a result of the intrinsic nature of elastic light scattering aerosol particles, the non-monotonic size dependence of the scattered light intensity infl uences the function of most single optical particle counters and spectrometers. In order to tackle the problem of the varying response of single particle spectrometers when refractive indices of aerosol change, we developed a system utilizing two laser illumination sources with different wavelengths (533 nm and 685 nm) and four detectors collecting the forward and backward scattered light from both illuminating beams. The new method aims to determine the size and refractive index of particles typically occurring in the atmosphere. We successfully tested this new method numerically for its capability to simultaneously determine particle size in the range from 0.1 to 10 μm, the real part of the refractive index spanning from 1.1 to 2, and the imaginary part of refractive index between 0 and 1. The fi rst experimental results obtained with the prototype of the spectrometer verify the capability of the technique for accurate size measurement and real-time differentiation between non-absorbing and absorbing aerosol particles.

Keywords: Atmospheric aerosols, optical measurement, particle size, refractive index

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnard J.C. and Harrison L.C. (1988), Monotonic responses from monochromatic optical particle counters, Appl. Opt., 27, 584–592.CrossRefGoogle Scholar
  2. Bohren C.F. and Hufman D.R. (1983),Absorption and Scattering of Light by Small Particles., Wiley Interscience Publication, New York.Google Scholar
  3. Chang H., Okuyama K., and Szymanski W.W. (2003), Experimental evaluation of optical properties of porous silica/carbon composite particles, Aerosol Sci. Technol., 37, 735–751.CrossRefGoogle Scholar
  4. Cooke D.D. and Kerker M. (1975), Response calculations for light scattering aerosol particle counters, Appl. Opt., 14, 734–745.CrossRefGoogle Scholar
  5. Czitrovsky A. and Jani P. (1993), New design for a light scattering airborne particle counter and its applications, Opt. Eng., 32, 2557–2582.CrossRefGoogle Scholar
  6. Dick W.D., Sachweh B.A., and McMurry P.H. (1996), Distinction of coal dust particles from liquid droplets by variations in azimuthal light scattering, Appl. Occup. Environ. Hyg., 11(7), 637–646.Google Scholar
  7. Dick W.D., McMurry P.H., and Bottiger J.R. (1994), Size and composition dependent response of the DAWN-A multi-angle single particle detector, Aerosol Sci. Technol., 20, 345–355.CrossRefGoogle Scholar
  8. Garvey D.M. and Pinnick R.G. (1983), Response characteristics of the particle measuring systems active scattering aerosol spectrometer probe, Aerosol Sci. Technol., 2, 477–488.CrossRefGoogle Scholar
  9. Hanusch T. and Jaenicke R. (1993), Simulation of optical particle counter FSSP-100. Consequences for size distribution measurements, J. Aerosol Sci., 23, 112–120.Google Scholar
  10. Hering S. and McMurry P.H. (1991), Response of a PMS LAS-X laser optical particle counter to monodisperse atmospheric aerosols, Atmos. Environ., 25A, 463–461.Google Scholar
  11. Hinds W.C. and Kraske G. (1986), Performance of PMS model LAS-X optical particle counter, J. Aerosol Sci., 17, 67–72.CrossRefGoogle Scholar
  12. Hogan A., Ahmed N., Black J., and Barnard S. (1985), Some physical properties of black aerosol, J. Aerosol Sci., 16, 391–396.CrossRefGoogle Scholar
  13. Kerker M. (1997), Light scattering instrumentation for aerosol studies and historical overview, Aerosol Sci. Technol., 27, 522–535.CrossRefGoogle Scholar
  14. Liu B.Y.H. and Pui D.Y.H. (1975), On the performance of the electrical aerosol analyzer, J. Aerosol Sci., 6, 249–264.CrossRefGoogle Scholar
  15. Liu B.Y.H., Szymanski W.W., and Pui D.Y.H. (1983), Response of laser optical particle counter to transparent and light absorbing particles, ASHRAE Trans., 92, 518–527.Google Scholar
  16. Liu Y. and Daum P.H. (2000), The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters, J. Aerosol Sci., 31, 945–956.CrossRefGoogle Scholar
  17. Liu B.Y.H., Szymanski W.W., and Ahn K.H. (1985), Aerosol size distribution measurement by laser and white light optical particle counters, J. Environ. Sci., 28, 19–25.Google Scholar
  18. McMurry P.H., Zhang X. and Lee C.-T. (1996), Issues in aerosol measurement for optics assessment, J. Geophys. Res., 101, 19189–19195.CrossRefGoogle Scholar
  19. Nagy A., Szymanski W.W., Golczewski A., Gál P., and Czitrovszky A. (2005), Effects of the evaluation table dimensions on the DWOPS sizing accuracy, In: Proceedings of the European Aerosol Conference EAC2005 Ghent, Belgium.Google Scholar
  20. Pinnick R.G., Pendleton J.D., and Videen G. (2000), Characteristics of the particle measuring systems active scattering aerosol spectrometer probes, Aerosol Sci. Technol., 33, 334–352.CrossRefGoogle Scholar
  21. Renliang Xu. (2000), Particle characterization: Light scattering methods, 13, 432 p, Kluwer, Dordrecht.Google Scholar
  22. Szymanski W.W. and Liu B.Y.H. (1986), On the sizing accuracy of laser optical particle counters, Part Charact., 3, 1–8.CrossRefGoogle Scholar
  23. Szymanski W.W., Nagy A., Czitrovszky A., and Jani P. (2002), A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density, Meas. Sci. Tech., 13, 303–307.CrossRefGoogle Scholar
  24. Szymanski W.W., Ciach T., Podgorski A., and Gradon L. (2000), Optimized response characteristics of an optical particle spectrometer for size measurement of aerosols, J. Quant. Spectrosc. Radiat. Transf., 64, 75–85.CrossRefGoogle Scholar
  25. Wyatt P.J. (1998), Submicrometer particle sizing by multi-angle light scattering following fractionation, J. Colloid Interface Sci., 197, 9–20.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Wladyslaw W. Szymanski
    • 1
  • Artur Golczewski
    • 1
  • Attila Nagy
    • 2
  • Peter Gál
    • 2
  • Aladar Czitrovszky
    • 2
  1. 1.Faculty of PhysicsUniversity of ViennaAustria
  2. 2.Department of Laser ApplicationsHungarian Academy of ScienceHungary

Personalised recommendations