Skip to main content

Raman Lidar for Monitoring of Aerosol Pollution in the Free Troposphere

  • Chapter
Book cover Advanced Environmental Monitoring

Geometrical, optical, and microphysical properties of free-tropospheric pollution have been determined with multiwavelength Raman lidar at Leipzig, Germany. Long-term observations carried out at fixed times (three times per week) since 1997 show advection of different aerosol types such as anthropogenic pollution from North America, forest-fire smoke from North America and Siberia, pollution from polar areas, and Saharan dust. Up to 45% off all regular observations indicate free-tropospheric pollution. On average, 20–25% of columnar optical depth was contributed by these layers. In extreme cases, the fraction of optical depth was considerably higher. At times pollution was found around 10–12 km height. Geometrical depth of the layers in many cases exceeded 1 km. Mean Ångström exponents of the layers varied from as low as 0.7 for Saharan dust to as high as 1.7 for anthropogenic pollution from North America. Individual measurements show significantly lower, respectively higher values. Lidar ratios in general were larger at 355 nm than at 532 nm. One remarkable exception is aged forest-fire smoke for which we find a reversed spectral dependence. Results for the Leipzig lidar site may be contrasted to results on European pollution outflow observed with Raman lidar at the southwest coast of Portugal. We also find strong differences with respect to South and Southeast Asian pollution observed during several field campaigns in the Indian Ocean.

Keywords: Free troposphere, inversion, multiwavelength lidar, particle properties, pollution, Raman lidar, transport

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Althausen D., Müller D., Ansmann A., Wandinger U., Hube H., Clauder E., and Zörner S. (2000), Scanning 6-wavelength 11-channel aerosol lidar, J. Atmos. Ocean. Technol., 17, 1469–1482.

    Article  Google Scholar 

  • Ångström A. (1964), The parameters of atmospheric turbidity, Tellus, 16, 64–75.

    Google Scholar 

  • Ansmann A. and Müller D. (2005), Lidar and atmospheric aerosol particles. In C. Weitkamp (Ed.), Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere, Springer, New York. pp. 105–141.

    Google Scholar 

  • Ansmann A., Riebesell M., and Weitkamp C. (1990), Measurements of atmospheric aerosol extinction profiles with a Raman lidar, Opt. Letts., 15, 746–748.

    Article  CAS  Google Scholar 

  • Ansmann A., Wandinger U., Riebesell M., Weitkamp C., and Michaelis W. (1992), Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131.

    Article  Google Scholar 

  • Ansmann A., Wagner F., Althausen D., Müller D., Herber A., and Wandinger U. (2001), European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast, J. Geophys. Res., 106, 20, 725–20, 733.

    Article  Google Scholar 

  • Ansmann A., Wagner F., Müller D., Althausen D., Herber A., von Hoyningen-Huene W., and Wandinger U. (2002), European pollution outbreaks during ACE 2: Optical particle properties inferred from multiwavelength lidar and star/Sun photometry, J. Geophys. Res., 107, EID 4259, DOI 10.1029/2001JD001109.

    Article  Google Scholar 

  • Bohren C.F. and Huffman D.R. (1983), Absorption and Scattering of Light by Small Particles. Wiley, New York, NY.

    Google Scholar 

  • Bösenberg J. et al. (2001), The German aerosol lidar network: Methodology, data, analysis. Report No. 317. Max Planck Institute for Meteorology, Hamburg, Germany.

    Google Scholar 

  • Bösenberg J. et al. (2003), EARLINET: A European aerosol research lidar network to establish an aerosol climatology. Report No. 348. Max Planck Institute for Meteorology, Hamburg, Germany.

    Google Scholar 

  • Cairo F., Di Donfrancesco G., Adriani A., Lucio P., and Federico F. (1999), Comparison of various linear depolarization parameters measured by lidar. Appl. Opt., 38, 4425–4432.

    Article  CAS  Google Scholar 

  • Collins D.R., Johnsson H.H., Seinfeld J.H., Flagan R.C., Gassó S., Hegg D.A., Russell P.B., Schmid B., Livingston J.M., Öström E.K., Noone J., Russell L.M., and Putaud J.P. (2000), In situ aerosol-size distributions and clear-column radiative closure during ACE 2. Tellus Ser. B, 52, 498–525.

    Article  Google Scholar 

  • Collins W.J., Rasch P.J., Eaton B.E., Fillmore D.W., Kiehl J.T., Beck C.T., and Zender C.S. (2002), Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts, J. Geophys. Res., 107, EID 8028, DOI 10.1029/2000JD000032.

    Article  Google Scholar 

  • Creilson J.K., Fishman J., and Wozniak A.E. (2003), Intercontinental transport of tropospheric ozone: A study of its seasonal variability across the North Atlantic utilizing tropospheric ozone residuals and its relationship to the North Atlantic oscillation, Atmos. Chem. Phys., 3, 2053–2066.

    CAS  Google Scholar 

  • Damoah R., Spichtinger N., Forster C., James P., Mattis I., Wandinger U., Beirle S., Wagner T., and Stohl A. (2004), Around the world in 17 days—hemispheric-scale transport of forest fire smoke from Russia in May 2003, Atmos. Chem. Phys., 4, 1311–1321.

    Article  CAS  Google Scholar 

  • Draxler R.R., and Hess G.D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition, Austral. Meteorol. Magazine, 47, 295–308, 1998.

    Google Scholar 

  • Franke K., Ansmann A., Müller D., Althausen D., Venkataraman C., Shekar Reddy M., Wagner F., and Scheele R. (2003), Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean, J. Geophys. Res., 108, EID 4059, DOI 10.1029/2002JD002473.

    Article  Google Scholar 

  • Fromm M., Alfred J., Hoppel K., Hornstein J., Bevilacqua R., Shettle E., Servranckx R., Li Z., and Stocks B. (2000), Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998, Geophys. Res. Letts., 27, 1407–1410.

    Article  Google Scholar 

  • Fromm M., Bevilacqua R., Servranckx R., Rosen J., Thayer J.P., Herman J., and Larko D. (2005), Pyro-cumulonimbus injection of smoke to the stratosphere: Observations and impact of a super blowup in northwestern Canada on 3–4 August 1998, J. Geophys. Res., 110, EID 08205, DOI 10.1029/2004JD005350.

    Article  Google Scholar 

  • Heintzenberg J., Tuch T., Wehner B., Wiedensohler A., Wex H., Ansmann A., Mattis I., Müller D., Wendisch M., Eckhardt S., and Stohl A. (2003), Arctic haze over Central Europe, Tellus Ser. B, 55, 796–807.

    Article  Google Scholar 

  • Jacob D.J., Logan J.A., and Murti P.P. (1999), Effect of rising Asian emissions on surface ozone in the United States, Geophys. Res. Letts., 26, 2175–2178.

    Article  CAS  Google Scholar 

  • Mattis I., Ansmann A., Wandinger U., and Müller D. (2003), Unexpectedly high aerosol load in the free troposphere over central Europe in spring/summer 2003, Geophys. Res. Letts., 30, EID 2178, DOI 10.1029/2003GL018442.

    Article  Google Scholar 

  • Mattis I., Ansmann A., Müller D., Wandinger U., and Althausen D. (2004), Multiyear aerosol observations with dual-wavelength Raman lidar in the framework of EARLINET, J. Geophys. Res., 109, EID D13203, DOI 10.1029/2004JD004600.

    Article  Google Scholar 

  • McKendry I.G., Hacker J.P., Stull R., Sakiyama S., Mignacca D., and Reid K. (2001), Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada, J. Geophys. Res., 106, 18, 361–18, 370.

    Article  Google Scholar 

  • Müller D., Ansmann A., Wagner F., and Althausen D. (2002), European pollution outbreaks during ACE 2: Microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations, J. Geophys. Res., 107, EID 4248, DOI 10.1029/2001JD001110.

    Article  Google Scholar 

  • Müller D., Franke K., Ansmann A., and Althausen D. (2003), Indo-Asian pollution during INDOEX: Microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations, J. Geophys. Res., 108, EID 4600, DOI 10.1029/2003JD003538.

    Article  Google Scholar 

  • Müller D., Mattis I., Wehner B., Althausen D., Wandinger U., Ansmann A., and Dubovik O. (2004), Comprehensive characterization of Arctic haze from combined observations with Raman lidar and sun photometer, J. Geophys. Res., 109, EID D13206, DOI 10.1029/2003JD004200.

    Article  Google Scholar 

  • Müller D., Mattis I., Wandinger U., Ansmann A., Althausen D., and Stohl A. (2005), Raman lidar observations of aged Siberian and Canadian forest-fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization, J. Geophys. Res., 110, EID D17201, DOI 10.1029/2004JD005756.

    Google Scholar 

  • Müller D., Wandinger U., and Ansmann A. (1999a). Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory, Appl. Opt., 38, 2346–2357.

    Article  Google Scholar 

  • Müller D., Wandinger U., and Ansmann A. (1999b). Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Simulation, Appl. Opt., 38, 2358–2368.

    Article  Google Scholar 

  • Müller D., Wandinger U., Althausen D., and Fiebig M. (2001), Comprehensive particle characterization from three-wavelength Raman-lidar observations, Appl. Opt., 40, 4863–4869.

    Article  Google Scholar 

  • Pisani G. (2006), Optical characterization of tropospheric aerosol in the urban area of Napels. Dissertation. University of Napels, Italy.

    Google Scholar 

  • Prather M., Gauss M., Berntsen T., Isaksen I., Sundet J., Bey I., Brasseur G., Dentener F., Derwent R., Stevenson D., Grenfell L., Hauglustaine D., Horowitz L., Jacob D., Mickley L., Lawrence M., von Kuhlmann R., Muller J.-F., Pitari G., Rogers H., Johnson M., Pyle J., Law K., Van Weele M., and Wild O. (2003), Fresh air in the 21st century?. Geophys. Res. Letts., 30, EID 1100, DOI 10.1029/2002GL016285.

    Article  Google Scholar 

  • Rodhe H. (1999), Human impact on the atmospheric sulfur balance, Tellus Ser. B, 51, 110–122.

    Article  Google Scholar 

  • Shaw G.E. (1995), The Arctic haze phenomenon, Bull. Am. Meteorol. Soc., 76, 2403–2413.

    Article  Google Scholar 

  • Stohl A. and Seibert P. (1998), Accuracy of trajectories as determined from the conservation of meteorological tracers, Q. J. R. Meteorol. Soc., 125, 1465–1484.

    Article  Google Scholar 

  • Stohl A., Hittenberger M., and Wotawa G. (1998), Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data, Atmos. Environ., 32, 4245–4264.

    Article  CAS  Google Scholar 

  • Veselovskii I., Kolgotin A., Griaznov V., Müller D., Wandinger U., and Whiteman D.N. (2002), Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding, Appl. Opt., 41, 3685–3699.

    Article  Google Scholar 

  • Veselovskii I., Kolgotin A., Müller D., and Whiteman D.N. (2005), Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis, Appl. Opt., 44, 5292–5303.

    Article  Google Scholar 

  • Wandinger U. and Ansmann A. (2002), Experimental determination of the lidar overlap profile with Raman lidar, Appl. Opt., 41, 511–514.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Müller, D., Mattis, I., Ansmann, A., Wandinger, U., Althausen, D. (2008). Raman Lidar for Monitoring of Aerosol Pollution in the Free Troposphere. In: Kim, Y.J., Platt, U. (eds) Advanced Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6364-0_12

Download citation

Publish with us

Policies and ethics