Skip to main content

Monte Carlo Simulations of Nano-Confined Block Copolymers

  • Chapter

Part of the book series: NanoScience and Technology ((NANO))

Block copolymers consist of chemically distinct polymer chains (blocks) covalently bonded together. Unlike polymer blends exhibiting phase separation on a macroscopic scale, block copolymers spontaneously self-assemble into ordered microdomains on the length scale of tens of nanometers, a phenomenon known as microphase separation [1, 2]. Due to the uniformity and periodicity of these microdomains, block copolymers have great potential applications in nanotechnology (e.g., templates for nanolithography, nanowires, high-density storage devices, quantum dots, photonic crystals, nanostructured membranes, etc.) [3-5], where the size, shape and spatial arrangement of the microdomains (morphology) are utilized. Understanding, predicting and controlling the selfassembled morphology of block copolymers are therefore of paramount interest. For the simplest architecture of linear diblock copolymers AB, four morphologies have been determined to be thermodynamically stable in the bulk, depending on the temperature and the volume fractions of the two blocks: lamellae of alternating A-rich and B-rich layers, hexagonally packed cylinders of the minority component (A) in the matrix of the other component (B), A-spheres packed on a body-centered cubic lattice in the B-matrix, and bicontinuous gyroid phase [6,7]. For more complex molecular architectures such as linear triblock copolymers ABC, many other morphologies have been observed in experiments and their bulk phase behavior is not fully understood yet [2, 8]. In many applications, a solution of block copolymers is spin-coated on a supporting substrate (e.g., silicon wafer) to form a thin film of tens to hundreds of nanometers thick, and the copolymers microphase separate in the film upon solvent evaporation and/or annealing. Under such nano-confinement, the tendency to resemble the bulk morphology with its characteristic period L0, the surface-block interactions (surface preference) and the surface con- finement all have important effects on the self-assembled morphology of block copolymers, thereby making it radically different from its bulk counterpart. One can therefore use the confining surface(s) to generate much more complex and fascinating morphologies, desirable for a broad array of applications [3-5]. The influence of confinement on the microphase separation and morphology of block copolymers is also of fundamental interest in polymer science. The self-assembled morphology of block copolymers under nano-confinement has been extensively studied by experiments, Monte Carlo (MC) simulations and various theories in the past decade. MC simulations are relatively easy to implement, and can give the exact solution (apart from statistical errors, which are controllable) to the model system studied. In addition to the selfassembled morphology, one can also access molecular details such as chain conformations and segmental distributions in MC. In this chapter, we focus on three-dimensional (3D) MC simulations of confined block copolymers, and compare the simulation results with experiments and theories when available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. S. Bates and G. H. Fredrickson. Annu. Rev. Phys. Chem., 41:525-557, 1990.

    Article  ADS  Google Scholar 

  2. F. S. Bates and G. H. Fredrickson. Phys. Today, 52(2):32-38, 1999.

    Article  Google Scholar 

  3. I. W. Hamley. Nanotechnology, 14(10):R39-R54, 2003.

    Article  ADS  Google Scholar 

  4. M. Lazzari and M. A. Lopez-Quintela. Adv. Mater., 15(19):1583-1594, 2003.

    Article  Google Scholar 

  5. C. Park, J. Yoon, and E. L. Thomas. Polymer, 44(22):6725-6760, 2003.

    Article  Google Scholar 

  6. M. W. Matsen and M. Schick. Phys. Rev. Lett., 72(16):2660-2663, 1994.

    Article  ADS  Google Scholar 

  7. M. W. Matsen and F. S. Bates. Macromolecules, 29(4):1091-1098, 1996.

    Article  ADS  Google Scholar 

  8. V. Abetz and P. F. W. Simon. Adv. Polym. Sci., 189:125-212, 2005.

    Article  Google Scholar 

  9. H. P. Deutsch and K. Binder. J. Chem. Phys., 94(3):2294-2304, 1991.

    Article  ADS  Google Scholar 

  10. I. Carmesin and K. Kremer. Macromolecules, 21(9):2819-2823, 1988.

    Article  ADS  Google Scholar 

  11. J. U. Sommer, A. Hoffmann, and A. Blumen. J. Chem. Phys., 111(8):3728-3732, 1999.

    Article  ADS  Google Scholar 

  12. G. J. Kellogg, D. G. Walton, A. M. Mayes, P. Lambooy, T. P. Russell, P. D. Gallagher, and S. K. Satija. Phys. Rev. Lett., 76(14):2503-2506, 1996.

    Article  ADS  Google Scholar 

  13. N. Koneripalli, R. Levicky, F. S. Bates, J. Ankner, H. Kaiser, and S. K. Satija. Langmuir, 12(26):6681-6690, 1996.

    Article  Google Scholar 

  14. E. Huang, T. P. Russell, C. Harrison, P. M. Chaikin, R. A. Register, C. J. Hawker, and J. Mays. Macromolecules, 31(22):7641-7650, 1998.

    Article  ADS  Google Scholar 

  15. M. Kikuchi and K. Binder. J. Chem. Phys., 101(4):3367-3377, 1994.

    Article  ADS  Google Scholar 

  16. T. Geisinger, M. Muller, and K. Binder. J. Chem. Phys., 111(11):5241-5250, 1999.

    Article  ADS  Google Scholar 

  17. T. Geisinger, M. Muller, and K. Binder. J. Chem. Phys., 111(11):5251-5258, 1999.

    Article  ADS  Google Scholar 

  18. Q. Wang, Q. L. Yan, P. F. Nealey, and J. J. de Pablo. J. Chem. Phys., 112(1):450-464, 2000.

    Article  ADS  Google Scholar 

  19. Y. H. Yin, P. C. Sun, T. H. Chen, B. H. Li, Q. H. Jin, D. T. Ding, and A. C. Shi. ChemPhysChem, 5(4):540-548, 2004.

    Article  Google Scholar 

  20. Q. Wang, P. F. Nealey, and J. J. de Pablo. Macromolecules, 34(10):3458-3470, 2001.

    Article  ADS  Google Scholar 

  21. P. Lambooy, T. P. Russell, G. J. Kellogg, A. M. Mayes, P. D. Gallagher, and S. K. Satija. Phys. Rev. Lett., 72(18):2899-2902, 1994.

    Article  ADS  Google Scholar 

  22. T. P. Russell, P. Lambooy, G. J. Kellogg, and A. M. Mayes. Physica B, 213:22-25,1995.

    Article  ADS  Google Scholar 

  23. N. Koneripalli, N. Singh, R. Levicky, F. S. Bates, P. D. Gallagher, and S. K. Satija. Macromolecules, 28(8):2897-2904, 1995.

    Article  ADS  Google Scholar 

  24. K. R. Shull. Macromolecules, 25(8):2122-2133, 1992.

    Article  ADS  Google Scholar 

  25. M. S. Turner. Phys. Rev. Lett., 69(12):1788-1791, 1992.

    Article  ADS  Google Scholar 

  26. K. Y. Wong, M. Trache, and W. E. McMullen. J. Chem. Phys., 101(6):5372-5387,1994.

    Article  ADS  Google Scholar 

  27. D. G. Walton, G. J. Kellogg, A. M. Mayes, P. Lambooy, and T. P. Russell. Macromolecules, 27(21):6225-6228, 1994.

    Article  ADS  Google Scholar 

  28. G. Brown and A. Chakrabarti. J. Chem. Phys., 102(3):1440-1448, 1995.

    Article  ADS  Google Scholar 

  29. M. S. Turner, A. Johner, and J. F. Joanny. J. Phys. I, 5(7):917-932, 1995.

    Article  Google Scholar 

  30. S. T. Milner and D. C. Morse. Phys. Rev. E, 54(4):3793-3810, 1996.

    Article  ADS  Google Scholar 

  31. M. W. Matsen. J. Chem. Phys., 106(18):7781-7791, 1997.

    Article  ADS  Google Scholar 

  32. G. T. Pickett and A. C. Balazs. Macromolecules, 30(10):3097-3103, 1997.

    Article  ADS  Google Scholar 

  33. W. H. Tang. Macromolecules, 33(4):1370-1384, 2000.

    Article  ADS  Google Scholar 

  34. M. J. Fasolka, P. Banerjee, A. M. Mayes, G. Pickett, and A. C. Balazs. Macro- molecules, 33(15):5702-5712, 2000.

    ADS  Google Scholar 

  35. W. A. M. Morgado, S. Martins, M. Bahiana, and M. S. O. Massunaga. Physica A, 283(1-2):208-211, 2000.

    Article  ADS  Google Scholar 

  36. Y. Tsori and D. Andelman. Eur. Phys. J. E, 5(5):605-614, 2001.

    Article  Google Scholar 

  37. J. Feng, H. L. Liu, and Y. Hu. Macromol. Theory Simul., 11(5):549-555, 2002.

    Article  Google Scholar 

  38. J. Feng, H. L. Liu, Y. Hu, and J. M. Prausnitz. Chem. Eng. Sci., 59(8-9):1701- 1710,2004.

    Article  Google Scholar 

  39. A. L. Frischknecht, J. G. Curro, and L. J. D. Frink. J. Chem. Phys., 117(22):10398-10411, 2002.

    Article  ADS  Google Scholar 

  40. . M. Dong and Q. Wang. Phys. Rev. Lett., submitted, 2007.

    Google Scholar 

  41. P. Mansky, T. P. Russell, C. J. Hawker, M. Pitsikalis, and J. Mays. Macro- molecules, 30(22):6810-6813, 1997.

    ADS  Google Scholar 

  42. E. Huang, P. Mansky, T. P. Russell, C. Harrison, P. M. Chaikin, R. A. Register, C. J. Hawker, and J. Mays. Macromolecules, 33(1):80-88, 2000.

    Article  ADS  Google Scholar 

  43. B. H. Sohn and S. H. Yun. Polymer, 43(8):2507-2512, 2002.

    Article  Google Scholar 

  44. T. P. Russell, A. Menelle, S. H. Anastasiadis, S. K. Satija, and C. F. Majkrzak. Macromolecules, 24(23):6263-6269, 1991.

    Article  ADS  Google Scholar 

  45. T. L. Morkved and H. M. Jaeger. Europhys. Lett., 40(6):643-648, 1997.

    Article  ADS  Google Scholar 

  46. . Q. Wang. Ph. D. Thesis, University of Wisconsin - Madison, 2002.

    Google Scholar 

  47. L. H. Radzilowski, B. L. Carvalho, and E. L. Thomas. J. Polym. Sci., Part B: Polym. Phys., 34(17):3081-3093, 1996.

    Article  ADS  Google Scholar 

  48. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, and N. Yao. Mat. Res. Soc. Symp. Proc., 461:179-184, 1997.

    Google Scholar 

  49. C. Harrison, M. Park, P. M. Chaikin, R. A. Register, D. H. Adamson, and N. Yao. Polymer, 39(13):2733-2744, 1998.

    Article  Google Scholar 

  50. C. Harrison, M. Park, P. Chaikin, R. A. Register, D. H. Adamson, and N. Yao. Macromolecules, 31(7):2185-2189, 1998.

    Article  ADS  Google Scholar 

  51. H. P. Huinink, J. C. M. Brokken-Zijp, M. A. van Dijk, and G. J. A. Sevink. J. Chem. Phys., 112(5):2452-2462, 2000.

    Article  ADS  Google Scholar 

  52. H. P. Huinink, M. A. van Dijk, J. C. M. Brokken-Zijp, and G. J. A. Sevink. Macromolecules, 34(15):5325-5330, 2001.

    Article  ADS  Google Scholar 

  53. Y. Z. Yang, F. Qiu, H. D. Zhang, and Y. L. Yang. Polymer, 47(6):2205-2216, 2006.

    Article  Google Scholar 

  54. T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. M. Stafford, E. Huang, M. Bal, M. Tuominen, C. J. Hawker, and T. Russell. Adv. Mater., 12(11):787-791, 2000.

    Article  Google Scholar 

  55. Q. Wang, Q. L. Yan, P. F. Nealey, and J. J. de Pablo. Macromolecules, 33(12):4512-4525, 2000.

    Article  ADS  Google Scholar 

  56. Q. Wang, S. K. Nath, M. D. Graham, P. F. Nealey, and J. J. de Pablo. J. Chem. Phys., 112(22):9996-10010, 2000.

    Article  ADS  Google Scholar 

  57. Q. Wang. Macromol. Theory Simul., 14(2):96-108, 2005.

    Article  Google Scholar 

  58. S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, and P. F. Nealey. Nature, 424(6947):411-414, 2003.

    Article  ADS  Google Scholar 

  59. L. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon, and S. G. J. Mochrie. Phys. Rev. Lett., 82(12):2602-2605, 1999.

    Article  ADS  Google Scholar 

  60. L. Rockford, S. G. J. Mochrie, and T. P. Russell. Macromolecules, 34(5):1487- 1492,2001.

    Article  ADS  Google Scholar 

  61. X. M. Yang, R. D. Peters, P. F. Nealey, H. H. Solak, and F. Cerrina. Macro- molecules, 33(26):9575-9582, 2000.

    ADS  Google Scholar 

  62. E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey. Adv. Mater., 16(15):1315-1319, 2004.

    Article  Google Scholar 

  63. E. W. Edwards, M. P. Stoykovich, M. Muller, H. H. Solak, J. J. de Pablo, and P. F. Nealey. J. Polym. Sci., Part B: Polym. Phys., 43(23):3444-3459, 2005.

    Article  ADS  Google Scholar 

  64. H. Chen and A. Chakrabarti. J. Chem. Phys., 108(16):6897-6905, 1998.

    Article  ADS  Google Scholar 

  65. A. Chakrabarti and H. Chen. J. Polym. Sci.: Part B: Polym. Phys., 36(17):3127- 3136,1998.

    Article  ADS  Google Scholar 

  66. D. Petera and M. Muthukumar. J. Chem. Phys., 109(12):5101-5107, 1998.

    Article  ADS  Google Scholar 

  67. G. G. Pereira and D. R. M. Williams. Macromolecules, 32(3):758-764, 1999.

    Article  ADS  Google Scholar 

  68. Y. Tsori and D. Andelman. J. Chem. Phys., 115(4):1970-1978, 2001.

    Article  ADS  Google Scholar 

  69. Q. Wang, P. F. Nealey, and J. J. de Pablo. Macromolecules, 35(25):9563-9573, 2002.

    Article  ADS  Google Scholar 

  70. Q. Wang, P. F. Nealey, and J. J. de Pablo. Macromolecules, 36(5):1731-1740, 2003.

    Article  ADS  Google Scholar 

  71. T. Thurn-Albrecht, J. Schotter, C. A. Kastle, N. Emley, T. Shibauchi, L. Krusin- Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell. Science, 290(5499):2126-2129, 2000.

    Article  ADS  Google Scholar 

  72. M. W. Matsen and R. B. Thompson. J. Chem. Phys., 111(15):7139-7146, 1999.

    Article  ADS  Google Scholar 

  73. M. W. Matsen. J. Chem. Phys., 113(13):5539-5544, 2000.

    Article  ADS  Google Scholar 

  74. S. D. Smith, R. J. Spontak, M. M. Satkowski, A. Ashraf, A. K. Heape, and J. S. Lin. Polymer, 35(21):4527-4536, 1994.

    Article  Google Scholar 

  75. J. Feng and E. Ruckenstein. Macromol. Theory Simul., 11(6):630-639, 2002.

    Article  Google Scholar 

  76. J. Feng and E. Ruckenstein. Polymer, 43(21):5775-5790, 2002.

    Article  Google Scholar 

  77. G. Szamel and M. Muller. J. Chem. Phys., 118(2):905-913, 2003.

    Article  ADS  Google Scholar 

  78. Z. H. Nie, Z. H. Su, Z. Y. Sun, T. F. Shi, and L. J. An. Macromol. Theory Simul., 14(8):463-473, 2005.

    Article  Google Scholar 

  79. Y. M. Huang, H. L. Liu, and Y. Hu. Macromol. Theory Simul., 15(2):117-127, 2006.

    Article  Google Scholar 

  80. G. T. Pickett and A. C. Balazs. Macromol. Theory Simul., 7(2):249-255, 1998.

    Article  Google Scholar 

  81. H. Q. Xiang, K. Shin, T. Kim, S. I. Moon, T. J. McCarthy, and T. P. Russell. Macromolecules, 37(15):5660-5664, 2004.

    Article  ADS  Google Scholar 

  82. K. Shin, H. Q. Xiang, S. I. Moon, T. Kim, T. J. McCarthy, and T. P. Russell. Science, 306(5693):76-76, 2004.

    Article  Google Scholar 

  83. Y. M. Sun, M. Steinhart, D. Zschech, R. Adhikari, G. H. Michler, and U. Gosele. Macromol. Rapid Commun., 26(5):369-375, 2005.

    Article  Google Scholar 

  84. A. C. Arsenault, D. A. Rider, N. Tetreault, J. I.-L. Chen, N. Coombs, G. A. Ozin, and I. Manners. J. Am. Chem. Soc., 127(28):9954-9955, 2005.

    Article  Google Scholar 

  85. H. Q. Xiang, K. Shin, T. Kim, S. Moon, T. J. McCarthy, and T. P. Russell. J. Polym. Sci., Part B: Polym. Phys., 43(23):3377-3383, 2005.

    Article  ADS  Google Scholar 

  86. H. Xiang, K. Shin, T. Kim, S. I. Moon, T. J. McCarthy, and T. P. Russell. Macromolecules, 38(4):1055-1056, 2005.

    Article  ADS  Google Scholar 

  87. Y. Y. Wu, G. S. Cheng, K. Katsov, S. W. Sides, J. F. Wang, J. Tang, G. H. Fredrickson, M. Moskovits, and G. D. Stucky. Nat. Mater., 3(11):816-822, 2004.

    Article  ADS  Google Scholar 

  88. X. H. He, M. Song, H. J. Liang, and C. Y. Pan. J. Chem. Phys., 114(23):10510- 10513,2001.

    Article  ADS  Google Scholar 

  89. X. H. He, H. J. Liang, M. Song, and C. Y. Pan. Macromol. Theory Simul., 11(4):379-382, 2002.

    Article  Google Scholar 

  90. P. Chen, X. H. He, and H. J. Liang. J. Chem. Phys., 124(10):104906, 2006.

    Article  ADS  Google Scholar 

  91. B. Yu, P. C. Sun, T. C. Chen, Q. H. Jin, D. T. Ding, B. H. Li, and A. C. Shi. Phys. Rev. Lett., 96(13):138306, 2006.

    Article  ADS  Google Scholar 

  92. G. J. A. Sevink, A. V. Zvelindovsky, J. G. E. M. Fraaije, and H. P. Huinink. J. Chem. Phys., 115(17):8226-8230, 2001.

    Article  ADS  Google Scholar 

  93. W. H. Li, R. A. Wickham, and R. A. Garbary. Macromolecules, 39(2):806-811, 2006.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Canopus Publishing Limited

About this chapter

Cite this chapter

Wang, Q. (2007). Monte Carlo Simulations of Nano-Confined Block Copolymers. In: Zvelindovsky, A.V. (eds) Nanostructured Soft Matter. NanoScience and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6330-5_16

Download citation

Publish with us

Policies and ethics