Computer Simulations of Nano-Scale Phenomena Based on the Dynamic Density Functional Theories: Applications of SUSHI in the OCTA System

Part of the NanoScience and Technology book series (NANO)

Multicomponent polymeric materials such as polymer blends, polymer melts, block copolymers, and polymer solutions, often show macro and micro phase separations that generate domains of the length scales of 1-100 nm. These polymeric materials with phase-separated domains are promising candidates for functional materials in nano-technologies [1-3]. The characteristic length scales of these domain structures are much larger than atomic length scales but are still smaller than hydrodynamic length scales. For phenomena on the micro and macroscopic length scales, there are well-established simulation techniques. For example, microscopic phenomena on atomic length scales can be dealt with using particle simulation techniques such as molecular dynamics (MD) simulations. On the other hand, macroscopic hydrodynamic phenomena are simulated with the finite element method (FEM). Compared to these extreme length scales, there have been very few simulation techniques for the intermediate length scales (the so-called mesoscopic scales) where the phaseseparated domains locate. To study the phase separated domains on mesoscopic scales, very useful tools are the density functional theories (DFTs) [4-7], where the phaseseparated domains are described in terms of the density distributions of monomers and solvents. One of the important features of DFT is that it can take into account the conformational entropy of polymer chains with any molecular architectures, i.e. the monomer sequence and the branching structures. Using this DFT, one can predict the equilibrium state of polymeric systems with mesoscopic structures, which is not easily accessible by the particle simulations or the fluid dynamics simulations. Therefore the DFT plays an important role in bridging between microscopic particle simulations and macroscopic fluid dynamics simulations.


Block Copolymer Diblock Copolymer Random Phase Approximation Gaussian Chain Segment Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. S. Bates, G. H. Fredrickson: Physics Today 52, 32 (1999).CrossRefGoogle Scholar
  2. 2.
    I. W. Hamley: Block Copolymers ; Oxford University Press: Oxford, 1999.Google Scholar
  3. 3.
    C. Park, J. Yoon, E. L. Thomas: Polymer 44, 6725 (2003).CrossRefGoogle Scholar
  4. 4.
    G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, B. Vincent: Polymers at Interfaces ; Chapman & Hall: London, 1993.Google Scholar
  5. 5.
    M. W. Matsen, F. S. Bates: Macromolecules 29, 1091 (1996).CrossRefADSGoogle Scholar
  6. 6.
    M. W. Matsen: J. Phys. Cond. Matt. 14, R21 (2002).CrossRefADSGoogle Scholar
  7. 7.
    T. Kawakatsu: Statistical Physics of Polymers - An Introduction ; SpringerVerlag, Berlin, 2004.Google Scholar
  8. 8.
    L. Leibler: Macromolecules 13 1602 (1980).CrossRefADSGoogle Scholar
  9. 9.
    . E. Helfand, Z. R. Wasserman: Macromolecules 9, 879 (1976). E. Helfand, Z. R. Wasserman: Macromolecules 11, 960 (1978). E. Helfand, Z. R. Wasserman: Macromolecules 11, 994 (1980).Google Scholar
  10. 10.
    M. W. Matsen, M. Schick: Phys. Rev. Lett. 72, 2660 (1994).CrossRefADSGoogle Scholar
  11. 11.
    . A. V. Zvelindovsky, G. J. A. Sevink, B. A. C. van Vlimmeren, N. M. Maurits, J. G. E. M. Fraaije: Phys. Rev. E 57, R4879 (1998). A. V. Zvelindovsky, B. A. C. van Vlimmeren, G. J. A. Sevink, N. M. Maurits, J. G. E. M. Fraaije: J. Chem. Phys. 109, 8751 (1998). A. V. Zvelindovsky, G. J. A. Sevink, J. G. E. M. Fraaije: Phys. Rev. E 62, R3063 (2000). A.V. Zvelindovsky, G. J. A. Sevink: Europhys. Lett. 62, 370 (2003).Google Scholar
  12. 12.
    T. Honda, T. Kawakatsu: Macromolecules 39, 2340 (2006).CrossRefADSGoogle Scholar
  13. 13.
    M. Laradji, A.-C. Shi, J. Noolandi, C. R. Desai: Macromolecules 30, 3242 (1997).CrossRefADSGoogle Scholar
  14. 14.
    . M. W. Matsen: Phys. Rev. Lett. 80, 4470 (1998). M. W. Matsen: J. Chem. Phys. 114, 8165 (2001).Google Scholar
  15. 15.
    . S. Qi, Z. G. Wang: Phys. Rev. Lett. 76, 1679 (1996). S. Qi, Z. G. Wang: Pys. Rev. E 55, 1682 (1997). S. Qi, Z. G. Wang: Polymer 39, 4639 (1998).Google Scholar
  16. 16.
    . M. Nonomura, T. Ohta: J. Phys. Soc. Jpn. 70, 927 (2001). M. Nonomura, T. Ohta: Physica A 304, 77 (2002). M. Nonomura, T. Ohta: J. Phys.: Condens. Matt. 15, L423 (2003).Google Scholar
  17. 17.
    K. Yamada, M. Nonomura, T. Ohta: Macromolecules 37, 5762 (2004).CrossRefADSGoogle Scholar
  18. 18.
    . ( T. Honda,H. Kodama, J.-R. Roan, H. Morita, S. Urashita, R. Hasegawa, K. Yokomizo, T. Kawakatsu, M. Doi: SUSHI Users Manual ; OCTA: Nagoya, Japan, 2004.
  19. 19.
    T. Honda and T. Kawahatsu Macromolecules 40, 1227 (2007).CrossRefADSGoogle Scholar
  20. 20.
    M. Doi, S. F. Edwards: The Theory of Polymer Dynamics ; Oxford Science: Oxford, 1986.Google Scholar
  21. 21.
    K. M. Hong, J. Noolandi: Macromolecules 14, 727 (1981).CrossRefADSGoogle Scholar
  22. 22.
    J. G. E. M. Fraaije: J. Chem. Phys. 99, 9202 (1993).CrossRefADSGoogle Scholar
  23. 23.
    R. Hasegawa, M. Doi: Macromolecules 30, 5490 (1997).CrossRefADSGoogle Scholar
  24. 24.
    . P.G. de Gennes: Scaling Concepts in Polymer Physics Cornell University Press, Ithaca, 1979.Google Scholar
  25. 25.
    A. Hotta, S. M. Clarke, E. M. Terentjev: Macromolecules 35, 271 (2002).CrossRefADSGoogle Scholar
  26. 26.
    T. Aoyagi, T. Honda, M. Doi: J. Chem. Phys. 117, 8153 (2002).CrossRefADSGoogle Scholar
  27. 27.
    R. Stadler, C. Auschra, J. Beckmann, U. Krappe, I. Voigt-Martin, L. Leibler: Macromolecules 28, 3080 (1995).CrossRefADSGoogle Scholar
  28. 28.
    W. Zheng, Z.-G. Wang: Macromolecules 28, 7215 (1995).CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    T. Gemma, A. Hatano, T. Dotera: Macromolecules 35, 3225 (2002).CrossRefADSGoogle Scholar
  30. 30.
    I. W. Hamley, K. A. Koppi, J. H. Rosedale, F. S. Bates, K. Almdal, K. Mortensen: Macromolecules 26 5959 (1993).CrossRefADSGoogle Scholar
  31. 31.
    S. Foerster, A. K. Khandpur, J. Zhao, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras: Macromolecules 27, 6922 (1994).CrossRefADSGoogle Scholar
  32. 32.
    . M. E. Vigild, K. Almdal, K., Mortensen,I. W. Hamley, J. P. A Fairclough, A. J. Ryan: Macromolecules 31, 5702 (1998).Google Scholar
  33. 33.
    D. A. Hajduk, P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters: Macromolecules 27, 4063 (1994).CrossRefADSGoogle Scholar
  34. 34.
    Y. Bohbot-Raviv, Z.-G. Wang: Phys. Rev. Lett. 85, 3428 (2000).CrossRefADSGoogle Scholar
  35. 35.
    P. G. de Gennes: J. Phys. (Paris) 31, 235 (1970).Google Scholar
  36. 36.
    T. Ohta, K. Kawasaki: Macromolecules 19, 2621 (1986).CrossRefADSGoogle Scholar
  37. 37.
    C-Y. Wang, T. P. Lodge: Macromol. Rapid. Commun. 23, 49 (2002).CrossRefGoogle Scholar
  38. 38.
    R. D. Groot, T. J. Madden: J. Chem. Phys. 108, 8713 (1998).CrossRefADSGoogle Scholar
  39. 39.
    T. Shima, H. Kuni, Y. Okabe, M. Doi, X.-F. Yuan, T. Kawakatsu: Macro- molecules 36, 9199 (2003).ADSGoogle Scholar
  40. 40.
    . M. Mihajlovic, T. S. Lo, Y. Shnidman: Phys. Rev. E 72, 041801-1-26 (2005).Google Scholar
  41. 41.
    B. Narayanan, V. A. Pryamitsyn, V. Ganesan: Macromolecules 37, 10180 (2004).CrossRefADSGoogle Scholar

Copyright information

© Canopus Publishing Limited 2007

Authors and Affiliations

  1. 1.Japan Chemical Innovation Institute, and Department of Organic and PolymeriTokyo Institute of TechnologyMeguro-kuJapan
  2. 2.Department of PhysicsTohoku UniversityAramakiJapan

Personalised recommendations