Advertisement

Some Remarks on the Space-Time of Newton and Einstein

  • Graham Hall
Part of the Fundamental Theories of Physics book series (FTPH, volume 153)

This paper presents an informal discussion of the space and time of classical Newtonian theory and of the space-time of Einstein’s special relativity theory, together with a comparison of them. The essential reason for the (1+3)- dimensionality of classical theory and the 4D of special relativity is described.

Keywords

Special Relativity Inertial Frame Lorentz Transformation Absolute Space Newtonian Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Hilbert. The Foundations of Geometry, Open Court Publishing, Chicago, 1902.MATHGoogle Scholar
  2. 2.
    G. Berkeley. Principles of Human Knowledge, Collins, 1967.Google Scholar
  3. 3.
    E. Mach. The Science of Mechanics, Open Court Publishing, Illinois, 1960.Google Scholar
  4. 4.
    E. T. Whittaker. A History of the Theories of Aether and Electricity Two Volumes. Nelson, 1951.Google Scholar
  5. 5.
    A. Einstein. Annalen der Physik Vol 17, 1905, 891.CrossRefADSGoogle Scholar
  6. 6.
    E. C. Zeeman. J.Math.Phys. Vol 5, 1964, 490.MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    L. A. Pars. Phil. Mag. 1921, 249.Google Scholar
  8. 8.
    G. N. Lewis and R. C. Tolman. Phil. Mag. 1909, 517.Google Scholar
  9. 9.
    M. Born. Einstein’s Theory of Relativity, Dover, 1965.Google Scholar
  10. 10.
    J. Ehlers, W. Rindler and R. Penrose. Am. J. Phys. Vol 33, 1965, 995.CrossRefADSGoogle Scholar
  11. 11.
    A. Pais. Subtle is the Lord, Oxford, 1982.Google Scholar
  12. 12.
    R. Dugas. A History of Mechanics, Routledge & Kegan Paul, London, 1955.Google Scholar
  13. 13.
    W. Voigt. Gott. Nach 1887, 41.Google Scholar
  14. 14.
    M. Planck. Verh. d. Deutsch, Phys. Ges. 1906, 136.Google Scholar
  15. 15.
    H. Minkowski. Gott. Nach. 1908, 53.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Graham Hall

There are no affiliations available

Personalised recommendations