Molecular Mapping, Marker-Assisted Selection And MAP-Based Cloning In Tomato

  • Majid R. Foolad


Significant progress has been made in molecular marker research in tomato, Lycopersicon esculentum Mill., including generation of markers, development of maps, mapping of genes and QTLs, and fine-mapping, characterization and map-based cloning of genes and QTLs. Numerous types of molecular markers have been developed in tomato, including RFLPs, RAPDs, AFLPs, SSRs, CAPS, ESTs, COSs and SNPs. Several molecular maps of tomato have been developed based on different interspecific populations, including the saturated linkage map based on a L. esculentum × L. pennellii cross. Markers and maps have been utilized extensively to map genes and QTLs controlling agriculturally and biologically important traits and for marker-assisted improvement of many simple-inherited traits such as disease resistance. Marker information also has been used for fine mapping and map-based cloning of several major genes and QTLs. Comparatively, little progress has been made in improving complex traits via marker-assisted selection. However, rapid advances in developing more efficient and resolving markers and in refining QTL positions are expected to lead to a greater use of marker technology for crop improvement in tomato.


Quantitative Trait Locus Quantitative Trait Locus Analysis Quantitative Trait Locus Mapping Lycopersicon Esculentum Cleave Amplify Polymorphic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarts JMMJG, Hontelez JGJ, Fischer P, Verkerk R, van Kammen A, Zabel P (1991) Acid phosphatase-11, a tightly linked molecular marker for root-knot nematode resistance in tomato: from protein to gene, using PCR and degenerate primers containing dexoyinosine. Plant Mol Biol 16:647–661PubMedCrossRefGoogle Scholar
  2. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656PubMedCrossRefGoogle Scholar
  3. Adkins S (2000) Tomato spotted wilt virus – positive steps towards negative success. Mol Plant Pathol 1:151–157CrossRefPubMedGoogle Scholar
  4. Alpert KB, Tanksley S (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2 – a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA 93:15503–15507PubMedCrossRefGoogle Scholar
  5. Alpert KB, Grandillo S, Tanksley SD (1995) fw 2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000CrossRefGoogle Scholar
  6. Ammiraju JSS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484PubMedGoogle Scholar
  7. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218Google Scholar
  8. Azanza F, Kim D, Tanksley SD, Juvik JA (1995) Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening. Theor Appl Genet 91:495–504CrossRefGoogle Scholar
  9. Bai Y, Huang CC, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003) QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact 16:169–176PubMedCrossRefGoogle Scholar
  10. Balint-Kurti PJ, Dixon MS, Jones DA, Norcott KA, Jones JDG (1994) RFLP linkage analysis of the Cf-4 and Cf-9 genes for resistance to Cladospsorium fulvum in tomato. Theor Appl Genet 88:691–700CrossRefGoogle Scholar
  11. Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O, Ganal M, Lahaye T, Bonas U (2001) Genetic mapping and functional analysis of the tomato Bs-4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria. Mol Plant Microbe Interact 14:629–638PubMedCrossRefGoogle Scholar
  12. Barone A (2005) Molecular marker-assisted selection for pyramiding resistance genes in tomato. Adv Hort Sci 19:147–152Google Scholar
  13. Behare J, Laterrot H, Sarfatti M, Zamir D (1991) RFLP mapping of the Stemphylium resistance gene in tomato. Mol Plant Microbe Interact 4:489–492Google Scholar
  14. Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: Linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877PubMedGoogle Scholar
  15. Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397CrossRefGoogle Scholar
  16. Bernatzky R (1993) Genetic mapping and protein product diversity of the self-incompatibility locus in wild tomato (Lycopersicon peruvianum). Bioch Genet 31:173–184CrossRefGoogle Scholar
  17. Bernatzky R, Tanksley SD (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898PubMedGoogle Scholar
  18. Blauth SL, Steffiens JC, Churchill GA, Mutschler MM (1999) Identification of QTLs controlling acylsugar fatty acid composition in an intraspecific population of Lycopersicon pennellii (Corr) D’Arcy. Theor Appl Genet 99:373–381CrossRefGoogle Scholar
  19. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  20. Breto MP, Asins MJ, Carbonell EA (1994) Salt tolerance in Lycopersicon species: III. Detection of quantitative trait loci by means of molecular markers. Theor Appl Genet 88:395–401CrossRefGoogle Scholar
  21. Brommenschenkel SH, Tanksley SD (1997) Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol Gen Genet 256:121–126CrossRefGoogle Scholar
  22. Brommenschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact 2000:1130–1138CrossRefGoogle Scholar
  23. Brouwer DJ, St Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs. Theor Appl Genet 108:628–638PubMedCrossRefGoogle Scholar
  24. Brouwer DJ, Jones ES, St Clair DA (2004) QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome 47:475–492PubMedCrossRefGoogle Scholar
  25. Budiman MA, Chang S-B, Lee S, Yang TJ, Zhang H-B, de Jong H, Wing RA (2004) Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor Appl Genet 108:190–196PubMedCrossRefGoogle Scholar
  26. Butler L (1968) Linkage summary. Rep Tomato Genet Coop 18:4–6Google Scholar
  27. Carmel-Goren L, Liu Y-S, Lifschitz E, Zamir D (2003) The SELF-PRUNING gene family in tomato. Plant Mol Biol 52:1215–1222PubMedCrossRefGoogle Scholar
  28. Causse M, Saliba-Colombani V, Lecomte L, Duffé P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098PubMedCrossRefGoogle Scholar
  29. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevaller C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685PubMedCrossRefGoogle Scholar
  30. Chagué V, Mercier JC, Guénard M, de Courcel AGL, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677CrossRefGoogle Scholar
  31. Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103CrossRefGoogle Scholar
  32. Chen K-Y, Tanksley SD (2004) High-resolution mapping and functional analysis of se2.1: A major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563–1573PubMedCrossRefGoogle Scholar
  33. Chen FQ, Foolad MR, Hyman J, Clair DA St, Beelman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299CrossRefGoogle Scholar
  34. Chetelat RT (2002) Revised list of monogenic stocks. Rep Tomato Genet Coop 52:41–62Google Scholar
  35. Chunwongse J, Bunn TB, Crossman C, Jinag J, Tanksley SD (1994) Chromosomal localization and molecular-marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor Appl Genet 89:76–79CrossRefGoogle Scholar
  36. Chunwongse J, Chunwongse C, Black L, Hanson P (1998) Mapping of Ph-3 gene for late blight from L. pimpinellifolium L3708. Rep Tomato Genet Coop 48:13–14Google Scholar
  37. Coaker GL, Francis DM (2004) Mapping, genetic effects, and epistatic interaction to two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor Appl Genet 108:1047–1055PubMedCrossRefGoogle Scholar
  38. Danesh D, Aarons S, Mcgill GE, Young ND (1994) Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol Plant Microbe Interact 7:464–471PubMedGoogle Scholar
  39. de Giovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48CrossRefGoogle Scholar
  40. de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596Google Scholar
  41. Dellapenna D, Alexandert DC, Bennett AB (1986) Molecular cloning of tomato fruit polygalacturonase: analysis of polygalacturonase mRNA levels during ripening. Proc Natl Acad Sci USA 83:6420–6424PubMedCrossRefGoogle Scholar
  42. Diwan N, Fluhr R, Ehsed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98:315–319CrossRefGoogle Scholar
  43. Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–459PubMedCrossRefGoogle Scholar
  44. Doganlar S, Dodson J, Gabor B, Beck-Bunn T, Crossman C, Tanksley SD (1998) Molecular mapping of the py-1 gene for resistance to corky root rot (Pyrenochaeta lycopersici) in tomato. Theor Appl Genet 97:784–788CrossRefGoogle Scholar
  45. Doganlar S, Tanksley SD, Mutschler MA (2000) Identification and molecular mapping of loci controlling fruit ripening time in tomato. Theor Appl Genet 100:249–255CrossRefGoogle Scholar
  46. Doganlar S, Frary A, Ku HM, Tanksley SD (2002) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202PubMedCrossRefGoogle Scholar
  47. Duvick DN (1996) Plant breeding, an evolutionary concept. Crop Sci 36:539–548CrossRefGoogle Scholar
  48. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162PubMedGoogle Scholar
  49. FAOSTAT (2005) FAO Statistical Databases. Food and agriculture organization of the United Nations, Statistics DivisionGoogle Scholar
  50. Foolad MR (1999a) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42:727–734CrossRefGoogle Scholar
  51. Foolad MR (1999b) Genetics of salt tolerance and cold tolerance in tomato: quantitative analysis and QTL mapping. Plant Biotechnol 16:55–64Google Scholar
  52. Foolad MR (2000) Genetic bases of salt tolerance and cold tolerance in tomato. Curr Top Plant Biol 2:35–49Google Scholar
  53. Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell, Tissue Org Cult 76:101–119CrossRefGoogle Scholar
  54. Foolad MR (2005) Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 613–684Google Scholar
  55. Foolad MR, Chen FQ (1998) RAPD markers associated with salt tolerance in an Interspecific cross of tomato (Lycopersicon esculentum ¥ L. pennellii}). Plant Cell Rep 17:306–312CrossRefGoogle Scholar
  56. Foolad MR, Chen FQ (1999) RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato. Theor Appl Genet 99:235–243CrossRefGoogle Scholar
  57. Foolad MR, Jones RA (1991) Genetic analysis of salt tolerance during germination in Lycopersicon. Theor Appl Genet 81:321–326Google Scholar
  58. Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192CrossRefGoogle Scholar
  59. Foolad MR, Jones RA, Rodriguez RL (1993) RAPD markers for constructing intraspecific tomato genetic maps. Plant Cell Rep 12:293–297CrossRefGoogle Scholar
  60. Foolad MR, Stoltz T, Dervinis C, Rodriguez RL, Jones RA (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breed 3:269–277CrossRefGoogle Scholar
  61. Foolad MR, Chen FQ, Lin GY (1998a) RFLP mapping of QTLs conferring cold tolerance during seed germination in an interspecific cross of tomato. Mol Breed 4:519–529CrossRefGoogle Scholar
  62. Foolad MR, Chen FQ, Lin GY (1998b) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144CrossRefGoogle Scholar
  63. Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167–173Google Scholar
  64. Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454PubMedCrossRefGoogle Scholar
  65. Foolad MR, Zhang L, Khan A, Niño-Liu D, Lin GY (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum ¥ L. hirsutum cross. Theor Appl Genet 104:945–958PubMedCrossRefGoogle Scholar
  66. Foolad MR, Zhang L, Subbiah P (2003a) Genetics of drought tolerance during seed germination in tomato: inheritance and QTL mapping. Genome 46:536–545Google Scholar
  67. Foolad MR, Zhang LP, Subbiah P (2003b) Relationships among cold, salt and drought tolerance during seed germination in tomato: inheritance and QTL mapping. Acta Hort 618:47–57Google Scholar
  68. Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J-P, Meller J, Elber R, Alpert KB, Tanksley S (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88PubMedCrossRefGoogle Scholar
  69. Frary A, Doganlar S, Fulton TM, Uhlig J, Yates H, Tanksley SD (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243PubMedCrossRefGoogle Scholar
  70. Frary A, Fritz LA, Tanksley SD (2004a) A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theor Appl Genet 109:523–533CrossRefGoogle Scholar
  71. Frary A, Fulton TM, Zamir D, Tanksley S (2004b) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496CrossRefGoogle Scholar
  72. Frary A, Xu Y, Liu JP, Mitchell S, Tedeschi E, Tanksley SD (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312PubMedCrossRefGoogle Scholar
  73. Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723PubMedCrossRefGoogle Scholar
  74. Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genomics 266:821–826PubMedCrossRefGoogle Scholar
  75. Fridman E, Carrari F, Liu Y-S, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgrssions. Science 305:786–789CrossRefGoogle Scholar
  76. Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparison with QTLs found in other wild species. Theor Appl Genet 95:881–894CrossRefGoogle Scholar
  77. Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton AJ, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042CrossRefGoogle Scholar
  78. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilizatioin of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467PubMedCrossRefGoogle Scholar
  79. Ganal MW, Simon R, Brommonschenkel S, Tanksley SD, Kumar A (1995) Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol Plant Microbe Interact 8:886–891PubMedGoogle Scholar
  80. Ganal MW, Czihal R, Hannappel U, Kloos D-U, Polley A, Ling H-Q (1998) Sequencing of DNA clones from the genetic map of tomato (Lycopersicon esculentum). Genome Res 8:842–847PubMedGoogle Scholar
  81. Georgelis N, Scott JW, Baldwin EA (2004) Relationship of tomato fruit sugar concentration with physical and chemical traits and linkage of RAPD markers. J Am Soc Hort Sci 129:839–845Google Scholar
  82. Gerster H (1997) The potential role of lycopene for human health. J Am Coll Nutr 16:109–126PubMedGoogle Scholar
  83. Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Phys Plant Mol Biol 52:725–749CrossRefGoogle Scholar
  84. Giovannoni JJ, Noensie EN, Ruezinsky DM, Lu X-H, Tracy SL, Ganal MW, Martin GB, Pillen K, Alpert KB, Tanksley SD (1995) Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes. Mol Gen Genet 248:195–206PubMedCrossRefGoogle Scholar
  85. Giovannoni JJ, Yen H, Shelton B, Miller S, Vrebalov J, Kannan P, Tieman D, Hackett R, Grierson D, Klee H (1999) Genetic mapping of ripening and ethylene-related loci in tomato. Theor Appl Genet 98:1005–1013CrossRefGoogle Scholar
  86. Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer; Review of the epidemiologic literature. J Natl Cancer Inst 91:317–331PubMedCrossRefGoogle Scholar
  87. Goggin FL, Williamson VM, Ullrich SE (2001) Variability in the response of Macrosiphum euphorbiae and Myzux persicae (Himiptera: Aphididae) to the tomato resistance gene Mi. Environ Entomol 30:101–106CrossRefGoogle Scholar
  88. Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from Lycopersicon esculentum × Lycopersicon cheesmanii cross. Theor Appl Genet 90:925–932CrossRefGoogle Scholar
  89. Graham EB, Frary A, Kang JJ, Jones CM, Gardener RG (2004) A recombinant inbred line mapping population derived from a Lycopersicon esculentum × L pimpinellifolium cross. Rep Tomato Genet Coop 54:22–25Google Scholar
  90. Grandillo S, Tanksley SD (1996a) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965CrossRefGoogle Scholar
  91. Grandillo S, Tanksley SD (1996b) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951CrossRefGoogle Scholar
  92. Grandillo S, Ku J, Tanksley SD (1996) Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Mol Breed 2:251–260CrossRefGoogle Scholar
  93. Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987CrossRefGoogle Scholar
  94. Grierson D, Tucker GA, Keen J, Ray J, Bird CR, Schuch W (1986) Sequencing and identification of a cDNA clone for tomato polygalacturonase. Nucl Acids Res 14:8595–8603PubMedCrossRefGoogle Scholar
  95. Griffiths PD, Scott JW (2001) Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. J Am Soc Hort Sci 126:462–467Google Scholar
  96. Gu Y-Q, Martin GB (1998) Molecular mechanisms involved in bacterial speck disease resistance of tomato. Phil Trans R Soc Lond 353:1455–1461CrossRefGoogle Scholar
  97. Gur A, Zamir D (2004) Unsused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:1610–1615CrossRefGoogle Scholar
  98. Gur A, Semel Y, Cahaner A, Zamir D (2004) Real time QTL of complex phenotypes of tomato interspecific introgression lines. Trends Plant Sci 9:107–109PubMedCrossRefGoogle Scholar
  99. Haanstra JPW, Wye C, Verbaked H, Meijer-Dekens F, Berg Pvd, Odinot P, Heusden AWv, Tanksley S, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 population. Theor Appl Genet 99:254–271CrossRefGoogle Scholar
  100. Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniy-Appa V (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hort Sci 125:15–20Google Scholar
  101. He C, Poysa V, Yu K (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106:363–373PubMedGoogle Scholar
  102. Huang CC, Cui YY, Weng CR, Zabel P, Lindhout P (2000) Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor Appl Genet 101:918–924CrossRefGoogle Scholar
  103. Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of B-carotene and xanthophylls in plants. Plant Cell 14:333–342PubMedCrossRefGoogle Scholar
  104. Ito P, Currence TM (1964) A linkage test involving c sp B+ md in chromosome 6. Rep Tomato Genet Coop 14:14–15Google Scholar
  105. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73PubMedCrossRefGoogle Scholar
  106. Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS, Jones JDG (1993) Two complex resistance loci revealed in tomato by classical and RFLP mapping of Cf-2, Cf-4, Cf-5, and Cf-9 genes for resistance to Cladosporium fulvum. Mol Plant Microbe Interact 6:348–357Google Scholar
  107. Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510CrossRefPubMedGoogle Scholar
  108. Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, Zabel P, Williamson VM (1998) Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol Gen Genet 257:376–385PubMedCrossRefGoogle Scholar
  109. Kawchuk LM, Hachey J, Lynch DR (1998) Development of sequence characterized DNA markers linked to a dominant verticillium wilt resistance gene in tomato. Genome 41:91–95PubMedCrossRefGoogle Scholar
  110. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98:6511–6515PubMedCrossRefGoogle Scholar
  111. Kinzer SM, Schwager SJ, Mutschler MA (1990) Mapping of ripening-related or – specific cDNA clones of tomato (Lycopersicon esculentum). Theor Appl Genet 79:489–496CrossRefGoogle Scholar
  112. Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae – a model for linking genomics with biodiversity. Comp Funct Genom 5:285–291CrossRefGoogle Scholar
  113. Kohler GR, Clair DA St (2005) Variation for resistance to aphids (Homoptera: Aphididae) among tomato inbred backcross lines derived from wild Lycopersicon species. J Econ Entomol 98:988–995PubMedGoogle Scholar
  114. Konieczny A, Ausubel FA (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410PubMedCrossRefGoogle Scholar
  115. Ku H-M, Doganlar S, Chen K-Y, Tanksley SD (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 99:844–850CrossRefGoogle Scholar
  116. Ku H-M, Grandillo S, Tanksley S (2000) fs8.1, a major QTL, sets the pattern of tomto carpel shape well before anthesis. Theor Appl Genet 101:873–878CrossRefGoogle Scholar
  117. Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breed 16:343–349CrossRefGoogle Scholar
  118. Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1994) The Never Ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521–530PubMedCrossRefGoogle Scholar
  119. Landegren U, Nilsson M, Kwok PY (1998) Reading bits of genetic information: Methods for single-nucleotide polymorphism analysis. Genome Res 8:769–776PubMedGoogle Scholar
  120. Langella A, Ercolano MR, Monti lM, Frusciante l, Barone A (2004) Molecular marker assisted transfer of resistance to TSWV in tomato elite lines. J Hort Sci Biotechnol 79:806–810Google Scholar
  121. Lauge R, Dmitriev AP, Joosten MHA, De Wit PJGM (1998) Additional resistance gene(s) against Cladosporium fulvum present on the Cf-9 introgression segment are associated with strong PR protein accumulation. Mol Plant Microbe Interact 11:301–308CrossRefGoogle Scholar
  122. Lawson DM, Lunde CF, Mutschler MA (1997) Marker-assisted transfer of acylsugar-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycopersicon esculentum. Mol Breed 3:307–317CrossRefGoogle Scholar
  123. Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668PubMedCrossRefGoogle Scholar
  124. Levesque H, Vedel F, Mathieu C, de Courcel AGL (1990) Identification of a short rDNA spacer sequence highly specific of a tomato line containing Tm-1 gene introgressed from Lycopersicon hirsutum. Theor Appl Genet 80:602–608CrossRefGoogle Scholar
  125. Levin I, Gilboa N, Shen S, Schaffer AA (2000) Fgr, a major locus that modulates the fructose to glucose ratio in mature fruits. Theor Appl Genet 100:256–262CrossRefGoogle Scholar
  126. Ling H-Q, Koch G, Båumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7130PubMedCrossRefGoogle Scholar
  127. Linnaeus C (1753) Species Planatarium, 1st ed edn. Holmiae, Stockholm, SwedenGoogle Scholar
  128. Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422PubMedGoogle Scholar
  129. Liu JP, Cong B, Tanksley SD (2003a) Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantiative trait locus fw2.2 controls fruit size. Plant Physiol 132:292–299CrossRefGoogle Scholar
  130. Liu JP, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306PubMedCrossRefGoogle Scholar
  131. Liu Y-S, Gur A, Ronen G, Causse M, Damidaux R, Duffe P, Buret M, Hirschberg J, Zamir D (2003b) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotech J 1:195–207CrossRefGoogle Scholar
  132. MacArthur JW (1934) Linkage groups in the tomato. J Genet 29:123–133Google Scholar
  133. Mangin B, Thoquet P, Grimsley NH (1999) Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172PubMedGoogle Scholar
  134. Mao L, Begum D, Chuang H-W, Budlman MA, Szymkowlak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MAD-box gene controlling tomato flower absicission zone development. Nature 406:910–913PubMedCrossRefGoogle Scholar
  135. Mao L, Begum D, Goff SA, Wing RA (2001) Sequence and analysis of the tomato JOINTLESS locus1. Plant Physiol 126:1331–1340PubMedCrossRefGoogle Scholar
  136. Martin B, Nienhuis J, King G (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243:1725–1728PubMedCrossRefGoogle Scholar
  137. Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993a) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436CrossRefGoogle Scholar
  138. Martin GB, Frary A, Wu T, Brommonschenkel S, Chunwongse J (1994) A member of the Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6:1543–1552PubMedCrossRefGoogle Scholar
  139. Martin GB, Vicente MCd, Tanksley SD (1993b) High-resolution linkage analysis and physical chraracterization of the Pto bacterial resistance locus in tomato. Mol Plant Microbe Interact 6:26–34Google Scholar
  140. McCormick S, Niedermeyer J, Fry J, Barnason A, Worsch R, Fraley R (1986) Leaf disk transformation of cultivated tomato (L. esculentum) using Agrobacterium tumifaciens. Plant Cell Rep 5:81–84CrossRefGoogle Scholar
  141. Medina-Filho H (1980) Linkage of Aps-1, Mi and other markers on chromosome 6. Rep Tomato Genet Coop 30:26–28Google Scholar
  142. Mesbah LA, Kneppers RJA, Takken FLW, Laurent P, Hille J, Nijkamp HJJ (1999) Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum). Mol Gen Genet 261:50–57PubMedCrossRefGoogle Scholar
  143. Miller P (1754) The gardeners dictionary, 4th ed, London, UKGoogle Scholar
  144. Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448Google Scholar
  145. Monforte AJ, Tanksley S (2000a) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479CrossRefGoogle Scholar
  146. Monforte AJ, Tanksley SD (2000b) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813CrossRefGoogle Scholar
  147. Moore S, Vrebalov J, Payton P, Giovannoni J (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53:2023–2030PubMedCrossRefGoogle Scholar
  148. Moreau P, Thoquet P, Olivier J, Laterrot H, Grimsley NH (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol Plant Microbe Interact 11:259–268CrossRefGoogle Scholar
  149. Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–157PubMedCrossRefGoogle Scholar
  150. Mutschler MA, Doerge RW, Liu SC, Kuai JP, Liedl BE, Shapiro JA (1996) QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTLs controlling acylsugar level and composition. Theor Appl Genet 92:709–718CrossRefGoogle Scholar
  151. Ohmori T, Murata M, Motoyoshi F (1996) Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor Appl Genet 92:151–156CrossRefGoogle Scholar
  152. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993CrossRefGoogle Scholar
  153. Paran I, Zamir D (1997) QTL analysis of morpholocial traits in a tomato recombinant inbred line population. Genome 40:242–248CrossRefPubMedGoogle Scholar
  154. Paran I, Goldman I, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548CrossRefGoogle Scholar
  155. Parrella G, Ruffel S, Moretti A, Morel C, Palloix A, Caranta C (2002) Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes. Theor Appl Genet 105:855–861PubMedCrossRefGoogle Scholar
  156. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726PubMedCrossRefGoogle Scholar
  157. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197PubMedGoogle Scholar
  158. Peters JL, Széll M, Kendrick RE (1998) The expression of light-regulated genes in the high-pigment-1 muatnt of tomato. Plant Physiol 117:797–807PubMedCrossRefGoogle Scholar
  159. Pierce LC (1971) Linkage test with Ph conditioning resistance to race 0. Rep Tomato Genet Coop 21:30Google Scholar
  160. Pillen K, Pineda O, Lewis C, Tanksley SD (1996) Status of genome mapping tools in the taxon Solanaceae. In: Paterson A (ed) Genome mapping in plants. RG Landes, Austin, TX, pp 281–308Google Scholar
  161. Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal J, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFl1. Development 125:1979–1989PubMedGoogle Scholar
  162. Rick CM (1973) Potential genetic resources in tomato species: clues from observation in native habitats. In: Srb AM (ed) Genes, enzymes, and populations. Plenum Press, New York, pp 255–269Google Scholar
  163. Rick CM (1975) The tomato. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 247–280Google Scholar
  164. Rick CM (1976a) Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet Agraria 30:249–259Google Scholar
  165. Rick CM (1976b) Tomato, Lycopersicon esculentum (Solanaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 268–273Google Scholar
  166. Rick CM (1978) The Tomato. Sci Am 23:76–87CrossRefGoogle Scholar
  167. Rick CM (1979a) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JC, Lester RN, Skelding AD (eds) The biology and taxnomy of the solanaceae. Academic Press, New York, pp 667–678Google Scholar
  168. Rick CM (1979b) Potential improvement of tomatoes by controlled introgression of genes from wild speies. Proceedings of the Conference of Broadening Genetic Base of Crops. Pudoc, Wageningen, pp 167–173Google Scholar
  169. Rick CM (1980) Tomato. Hybridization of crop plants. Am Soc Agron/Crop Sci Soc Am, Madison, WI, pp 669–680Google Scholar
  170. Rick CM (1991) Tomato paste: a concentrated review of genetic highlights from the beginnings to the advent of molecular genetics. Genetics 128:1–5Google Scholar
  171. Rick CM, Fobes JF (1974) Association of an allozyme with nematode resistance. Rep Tomato Genetic Coop 24:25Google Scholar
  172. Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bul Torrey Bot Club 102:376–384CrossRefGoogle Scholar
  173. Rick CM, Gill BS (1973) Reproductive errors in aneuploids: generation of variant extra-chromosomal types by tomato primary trisomics. Can J Genet Cytol 15:299–308Google Scholar
  174. Rivers BA, Bernatzky R, Robinson SJ, Jahnen-Dechent W (1993) Molecular diversity at the self-incompatibility locus is a salient feature in natural populations of wild tomato (Lycopersicon peruvianum). Mol Gen Genet 238:419–427PubMedCrossRefGoogle Scholar
  175. Robert VJM, West MAL, Inai S, Caines A, Arntzen L, Smith JK, Clair DA St (2001) Marker-assisted introgression of blackmold QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233CrossRefGoogle Scholar
  176. Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosyntheis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351PubMedCrossRefGoogle Scholar
  177. Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to beta-carotene formation in plant chloroplast discovered by map-based cloning of Beta and old-gold color muation in tomato. Proc Natl Acad Sci USA 97:11102–11107PubMedCrossRefGoogle Scholar
  178. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754PubMedCrossRefGoogle Scholar
  179. Rousseaux MC, Jones CM, Adams D, Chetelat RT, Bennett AB, Powell AA (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408PubMedCrossRefGoogle Scholar
  180. Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40PubMedCrossRefGoogle Scholar
  181. Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomatol. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272CrossRefGoogle Scholar
  182. Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded withing the Pto kinase gene cluster. Cell 86:123–133PubMedCrossRefGoogle Scholar
  183. Sandbrink JM, van-Ooijen JW, Purimahua CC, Vrielink M, Verkerk R, Zabel P, Lindhout P (1995) Localization of genes for bacterial cancer resistance in Lycopersicon peruvianum using RFLPs. Theor Appl Genet 90:444–450CrossRefGoogle Scholar
  184. Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 80:22–26Google Scholar
  185. Schornack S, Ballvora A, Gürlebeck D, Peart J, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37:46–60PubMedCrossRefGoogle Scholar
  186. Scott JW, Agrama HA, Jones JP (2004) RFLP-based analysis of recombination among resistance genes to fusarium wilt races 1, 2 and 3 in tomato. J Am Soc Hort Sci 129:394–400Google Scholar
  187. Simons G, Groenendijk J, Wijbrandi J, Reijans M (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1066PubMedCrossRefGoogle Scholar
  188. Slater A, Maunders MJ, Edwards K, Schuch W, Grierson D (1985) Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol Biol 5:137–147CrossRefGoogle Scholar
  189. Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes and pepinos (Solanaceae). Am J Bot 80:676–688CrossRefGoogle Scholar
  190. Stamova BS, Chetelat RT (2000) Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theor Appl Genet 101:527–537CrossRefGoogle Scholar
  191. Stevens MA, Rick CM (1986) Genetics and breeding. In: Atherton JG, Rudich J (eds) The tomato crop. Chapman and Hall, New York, pp 35–109Google Scholar
  192. Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw-5 locus for tomato spotted wild virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456CrossRefGoogle Scholar
  193. Stommel JR, Zhang YP (1998) Molecular markers linked to quantitative trait loci for anthracnose resistance in tomato (Abstract). Hort Science 33:514Google Scholar
  194. Suliman-pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLP, SSRs, and SNPs in Lycopersicon esculentum. Cell Mol Biol Letts 7:583–597Google Scholar
  195. Tanksley SD (1993) Linkage map of the tomato (Lycopersicon esculentum) (2N = 24). In: O’Brian SJ (ed) Genetic maps: locus maps of complex genomes, 6th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp6.3–6.15Google Scholar
  196. Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189CrossRefGoogle Scholar
  197. Tanksley SD, Loaiza-Figueroa F (1985) Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Proc Natl Acad Sci USA 82:5093–5096PubMedCrossRefGoogle Scholar
  198. Tanksley SD, Medina-Filho H, Rick CM (1982) Use of naturally-occuring enzyme variation to detect and map genes controlling quantitative traits in an interspecific cross of tomato. Heredity 49:11–25Google Scholar
  199. Tanksley SD, Rick CM (1980) Isozyme gene linkage map of tomato: applications in genetics and breeding. Theor Appl Genet 57:161–170CrossRefGoogle Scholar
  200. Tanksley SD, Rick CM, Vallejos CE (1984) Tight linkage between a nuclear male-sterile locus and an enzyme marker in tomato. Theor Appl Genet 68:109–113CrossRefGoogle Scholar
  201. Tanksley SD, Ganal MW, Prince JP, de-Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  202. Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224CrossRefGoogle Scholar
  203. Thompson AE, Tomes ML, Erickson HT, Wann EV, Armstrong RJ (1967) Inheritance of crimson fruit color in tomatoes. Proc Am Soc Hort Sci 91:495–504Google Scholar
  204. Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Grimsley NH (1996) Quantitative trati loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol Plant Microbe Interact 9:826–836Google Scholar
  205. Tigchelaar EC (1986) Tomato breeding. In: Bassett MJ (ed) Breeding for vegetable crops. AVI Publishing Co., Westport, CT, pp 135–171Google Scholar
  206. Tør M, Manning K, King GJ, Thompson AJ, Jones GH, Seymour GB, Armstrong SJ (2002) Genetic analysis and FISH mapping of the Clourless non-ripening locus of tomato. Theor Appl Genet 104:165–170PubMedCrossRefGoogle Scholar
  207. Truco MJ, Randall LB, Bloom AJ, Clair DA St (2000) Detection of QTL associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum × L. hirsutum. Theor Appl Genet 101:1082–1092CrossRefGoogle Scholar
  208. USDA (2005) Agricultural statistics 2005. United State Department of Agtriculture, National Agricultural Staticstics ServiceGoogle Scholar
  209. Vakalounakis DJ, Laterrot H, Moretti A, Ligoxigakis EK, Smardas K (1997) Linkage between Fr1 (Fusarium oxysporum f. sp. radicis-lycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato (Lycopersicon esculentum). Ann Appl Biol 130:319–323CrossRefGoogle Scholar
  210. Vallejos CE, Tanksley SD (1983) Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor Appl Genet 66:241–247CrossRefGoogle Scholar
  211. van der Biezen EA, Glagotskaya T, Overduin B, Nijkamp HJJ, Hille J (1995) Inheritance and genetic mapping of resistance to Alternaria alternata f. sp. lycopersici in Lycopersicon pennellii. Mol Gen Genet 247:453–461PubMedCrossRefGoogle Scholar
  212. van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456PubMedCrossRefGoogle Scholar
  213. van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in yellow stuffer tomato. Theor Appl Genet 107:139–147PubMedGoogle Scholar
  214. van der Knaap E, Lippman ZB, Tanksley SD (2000) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104:241–247CrossRefGoogle Scholar
  215. van der Knaap E, Sanyal A, Jackson SA, Tanksley SD (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168:2127–2140PubMedCrossRefGoogle Scholar
  216. van Heusden AW, Koornneef M, Voorrips RE, Brüggemann W, Pet G, Vrielink-van Ginkel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074CrossRefGoogle Scholar
  217. van Ooijen JW, Sandbrink JM, Vrielink M, Verkerk R, Zabel P, Lindhout P (1994) An RFLP linkage map of Lycopersicon peruvianum. Theor Appl Genet 89:1007–1013CrossRefGoogle Scholar
  218. van Tuinen A, Cordommier-Pratt M-M, Pratt LH, Verkerk R, Zabel P, Koornneef M (1997) The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor Appl Genet 94:115–122CrossRefPubMedGoogle Scholar
  219. Veremis JC, van Heusden AW, Roberts PA (1999) Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theor Appl Genet 98:274–280CrossRefGoogle Scholar
  220. Villalta I, Reina-Sånchez A, Cuartero J, Carbonell EA, Asins MJ (2005) Comparative microsatellite linkage analysis and genetic structure of two populations of F6 lines derived from Lycopersicon pimpinellifolium and L. cheesmanii. Theor Appl Genet 110:881–894PubMedCrossRefGoogle Scholar
  221. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  222. Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369PubMedCrossRefGoogle Scholar
  223. Vrebalov J, Ruezinsky DM, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343Google Scholar
  224. Wang Y, Van der Hoeven R, Nielsen R, Mueller LA, Giovannoni J, Tanksley SD (2005) Characteristics of the tomato nuclear genome as determined by sequencing unmethylated EcoRI digest fragment. Theor Appl Genet 112:72–84PubMedCrossRefGoogle Scholar
  225. Wann EV, Jourdain EL (1985) Effects of mutant genotypes hp og c and dg og c on tomato fruit quality. J Am Soc Hort Sci 110:212–215Google Scholar
  226. Warnock SJ (1988) A review of taxonomy and phylogeny of the genus Lycopersicon. Hort Sci 23:669–673Google Scholar
  227. Warren GF (1998) Spectacular increases in crop yields in the twentieth century. Weed Technol 12:752–760Google Scholar
  228. Wilkinson J, Lanahan MB, Yen H, Giovannoni J, Klee H (1995) An ethylene-induced component of signal transduction encoded by Never-ripe. Science 270:1807–1809PubMedCrossRefGoogle Scholar
  229. Williams JGK, Kubelik AE, Levak KJ, Rafalski JA, Tingey SC (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  230. Wing RA, Zhang HB, Tanksley SD (1994) Map-based cloning in crop plants. Tomato as a model system: I. Genetic and physical mapping of Jointless. Mol Gen Genet 242:681–688PubMedCrossRefGoogle Scholar
  231. Yaghoobi J, Kaloshian I, Wen Y, Williamson VM (1995) Mapping of a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91:457–464CrossRefGoogle Scholar
  232. Yang W-Y, Francis DM (2005) Marker assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J Am Soc Hort Sci 130:716–721Google Scholar
  233. Yang W-Y, Sacks EJ, Lewis Ivey ML, Miller SA, Francis DM (2005) Resistance in Lycopersicon esculentum intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 95:519–527CrossRefPubMedGoogle Scholar
  234. Yates HE, Frary A, Doganlar S, Frampton AJ, Eannetta NT, Uhlig J, Tanksley SD (2004) Comparative fine mapping of fruit quality QTLs on chromosome 4 introgression derived from two wild tomato species. Euphytica 135:283–296CrossRefGoogle Scholar
  235. Yen HC, Lee S, Tanksley SD, Lanahan MB, Klee HJ, Giovannoni JJ (1995) The tomato Never-ripe locus regulates ethylene-inducible gene experession and is linked to a homologue of the Arabidopsis ETR1 gene. Plant Physiol 107:1343–1353PubMedCrossRefGoogle Scholar
  236. Yen HC, Shelton BA, Howard LR, Lee S, Vrebalov J, Giovannoni JJ (1997) The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet 95:1069–1079CrossRefGoogle Scholar
  237. Yu ZH, Wang JF, Stall RE, Vallejos CE (1995) Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) dye. Genetics 141:675–682PubMedGoogle Scholar
  238. Zamir D, Ekstein-Michelson I, Zakay U, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146CrossRefGoogle Scholar
  239. Zamir D, Tal M (1987) Genetic analysis of sodium, potassium and chloride ion content in Lycopersicon. Euphytica 36:187–191CrossRefGoogle Scholar
  240. Zhang H-B, Budiman MA, Wing RA (2000) Genetic mapping of jointless-2 to tomato chromosome 12 using RFLP and RAPD markers. Theor Appl Genet 100:1183–1189CrossRefGoogle Scholar
  241. Zhang H-B, Martin GB, Tanksley SD, Wing RA (1994) Map-based cloning in crop plants. Tomato as a model system: II. Isolation and characterization of a set of overlapping artificial chromosomes encompassing the Jointless locus. Mol Gen Genet 244:613–621PubMedCrossRefGoogle Scholar
  242. Zhang L, Lin GY, Niño-Liu DO, Foolad MR (2003) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19CrossRefGoogle Scholar
  243. Zhang LP, Khan A, Niño-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum × L. hirsutum cross. Genome 45:133–146PubMedCrossRefGoogle Scholar
  244. Zhang Y, Stommel JR (2000) RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence beta-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill). Theor Appl Genet 100:368–375CrossRefGoogle Scholar
  245. Zhang Y-P, Stommel JR (2001) Development of SCAR and CAPS markers linked to the Beta gene in tomato. Crop Sci 41:1602–1608CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Majid R. Foolad
    • 1
  1. 1.Department of HorticultureThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations