Skip to main content

Applications of Linkage Disequilibrium and Association Mapping in Crop Plants

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

The investigations of patterns of linkage disequilibrium for designing association-mapping studies are fast becoming a method of interest for complex trait dissection and improvement practices in many crop plants. The methodology and its applications to crop improvement, to date are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abecasis GR, Cookson WO, Cardon LR (2001) The power to detect linkage disequilibrium with quantitative traits in selected samples. Am J Hum Genet 68:1463–1474

    Article  PubMed  CAS  Google Scholar 

  • Ackerman H, Usen S, Mott R, Richardson A, Sisay-Joof F et al (2003) Haplotypic analysis of the TNF locus by association efficiency and entropy. Genome Biol 4:R24

    Article  PubMed  Google Scholar 

  • Allison DB (1997) Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet 60:676–690

    Google Scholar 

  • Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111:206–217

    Article  PubMed  CAS  Google Scholar 

  • Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M et al (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60

    Article  PubMed  CAS  Google Scholar 

  • Baltunis BS, Huber DA, White TL, Golfard B, Stelzer HE (2005) Genetic effects of rooting loblolly pine stem cuttings from a partial diallel mating design. Can J Forest 35:1098–1108

    Article  Google Scholar 

  • Bamshad M, Wooding S, Salisbury BA, Stephens JC (2004) Deconstructing the relationship between genetics and race. Nat Rev Genet 5:598–609

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Cardon LR (2006) Evaluating coverage of genome-wide association studies. Nat Genet 38:659–662

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Blott S, Kim JJ, Moisio S, Schmidt-Kuntzel A, Cornet A et al (2003) Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163:253–266

    PubMed  CAS  Google Scholar 

  • Blouin JD (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18:503–511

    Article  Google Scholar 

  • Breseghello F, Sorrells M (2006a) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006b) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  Google Scholar 

  • Buckner B, Kelson TL, Robertson DS (1990) Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2:867–876

    Article  PubMed  CAS  Google Scholar 

  • Buckner B, Miguel PS, Janick-Buckner D, Bennetzen JL (1996) The y1 gene of maize codes for phytoene synthase. Genetics 143:479–488

    PubMed  CAS  Google Scholar 

  • Caldwell KS, Langridge P, Powell W (2004) Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. Plant Physiol 136:3177–3190

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    Article  PubMed  CAS  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M et al (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Storey JD (2006) Relaxed significance criteria for linkage analysis. Genetics 173:2371–2381

    Article  PubMed  CAS  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS et al (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232

    Article  PubMed  CAS  Google Scholar 

  • Devlin B, Bacanu SA, Roeder K (2004) Genomic control to the extreme. Nat Genet 36:1129–1130; author reply 1131

    Article  PubMed  CAS  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Devlin B, Roeder K, Wasserman L (2001) Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 60:155–166

    Article  PubMed  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Emik LO, Terrill CE (1949) Systematic procedures for calculating inbreeding coefficients. J Hered 40:51–55

    PubMed  CAS  Google Scholar 

  • Ersoz ES (2006) Candidate gene-association mapping for dissecting fungal disease resistance in loblolly pine. PhD Dissertation in Genetics, University of California, Davis

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM et al (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  PubMed  CAS  Google Scholar 

  • Forton J, Kwiatkowski D, Rockett K, Luoni G, Kimber M et al (2005) Accuracy of haplotype reconstruction from haplotype-tagging single-nucleotide polymorphisms. Am J Hum Genet 76:438–448

    Article  PubMed  CAS  Google Scholar 

  • Fulker DW, Cherny SS, Sham PC, Hewitt JK (1999) Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet 64:259–267

    Article  PubMed  CAS  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  PubMed  CAS  Google Scholar 

  • Garris AJ, McCouch SR, Kresovich S (2003) Population structure and its effects on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165:759–769

    PubMed  Google Scholar 

  • Geiringer H (1944) On the probability theory of linkage in Mendelian heredity. Ann Math Stat 15:25–57

    Google Scholar 

  • Golding GB (1984) The sampling distribution of linkage disequilibrium. Genetics 108:257–274

    PubMed  CAS  Google Scholar 

  • Gonzaléz-Martinéz SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006a) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926

    Article  CAS  Google Scholar 

  • Gonzaléz-Martinéz SC, Wheeler N, Ersoz ES, Neale DB (2006b) Association genetics in Pinus taeda L.I. wood property traits. Genetics 2007 175:399–409

    Google Scholar 

  • Halldorsson BV, Bafna V, Lippert R, Schwartz R, De La Vega FM et al (2004) Optimal haplotype block-free selection of tagging SNPs for genome-wide association studies. Genome Res 14:1633–1640

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Salas Fernandez MG, Casa AM Mitchell SE, Paterson AH et al (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Kraft T, Ganestam S, Sall T, Nilsson NO (2001) Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res 77:61–66

    Article  PubMed  CAS  Google Scholar 

  • Harjes CE, Yates H, Torbert R, Wurtzel E, Buckler ES (2007) Characterization of maize kernel carotenoid diversity and identification of functionally distinct alleles by association mapping- In preparation

    Google Scholar 

  • Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341

    PubMed  CAS  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447

    Article  PubMed  CAS  Google Scholar 

  • Henderson CR (1976) Simple method for computing inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32:69–83

    Article  Google Scholar 

  • Henderson CR (1984) Application of linear models in animal breeding. University of Guelph, Ontario

    Google Scholar 

  • Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A et al (2006) A common genetic variant is associated with adult and childhood obesity. Science 312:279–283

    Google Scholar 

  • Hill WG, Robertson, A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    Article  PubMed  CAS  Google Scholar 

  • Holte S, Quiaoit F, Hsu L, Davidov O, Zhao LP (1997) A population based family study of a common oligogenic disease – Part I: association/aggregation analysis. Genet Epidemiol 14:803–807

    Article  PubMed  CAS  Google Scholar 

  • Horvath S, Xu X, Laird NM (2001) The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 9:301–306

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR (1985) The sampling distribution of linkage disequilibrium under an infinite allele model without selection. Genetics 109:611–631

    PubMed  CAS  Google Scholar 

  • Hudson RR (2001) Two-locus sampling distributions and their application. Genetics 159:1805–1817

    PubMed  CAS  Google Scholar 

  • Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilbrium within and among natural populations of European Aspen (Populus tremula L., Salicaceae). Genetics 169:945–953

    Article  PubMed  CAS  Google Scholar 

  • Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J et al (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29:233–237

    Article  PubMed  CAS  Google Scholar 

  • Karayiorgou M, Sobin C, Blundell ML, Galke BL, Malinova L et al (1999) Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive-compulsive disorder. Biol Psychiat 45:1178–1189

    Article  PubMed  CAS  Google Scholar 

  • Kayihan GC, Huber DA, Morse AM, White TL, Davis JM (2005) Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theor Appl Genet 110:948–958

    Article  PubMed  Google Scholar 

  • Ke X, Cardon LR (2003) Efficient selective screening of haplotype tag SNPs. Bioinformatics 19:287–288

    Article  PubMed  CAS  Google Scholar 

  • Kennedy B, Quinton M, Vanarendonk J (1992) Estimation of effects of single genes on quantitative traits. J Anim Sci 70:2000–2012

    PubMed  CAS  Google Scholar 

  • Laird NM, Horvath S, Xu X (2000) Implementing a unified approach to family-based tests of association. Genet Epidemiol 19:S36–42

    Article  PubMed  Google Scholar 

  • Laird NM, Lange C (2006) Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet 7:385–394

    Article  PubMed  CAS  Google Scholar 

  • Lake SL, Blacker D, Laird NM (2000) Family-based tests of association in the presence of linkage. Am J Hum Genet 67:1515–1525

    Article  PubMed  CAS  Google Scholar 

  • Lange C, Lyon H, DeMeo D, Raby B, Silverman EK et al (2003) A new powerful non-parametric two-stage approach for testing multiple phenotypes in family-based association studies. Hum Hered 56:10–17

    Article  PubMed  Google Scholar 

  • Lewis CM (2002) Genetic association studies: design, analysis and interpretation. Brief Bioinform 3:146–153

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC (1988) On measures of gametic disequilibrium. Genetics 120:849–852

    PubMed  CAS  Google Scholar 

  • Lewontin RC, Kojima K (1960) The evolutionary dynamics of complex polymorphisms. Evolution 14:458–472

    Article  Google Scholar 

  • Long AD, Langley CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 9:720–731

    PubMed  CAS  Google Scholar 

  • Lukens L, Doebley J (2001) Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol 18:627–638

    PubMed  CAS  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and longrange disequilibrium in a durum wheat elite collection. Mol Breed 15:271–290

    Article  CAS  Google Scholar 

  • Meuwissen TH, Goddard ME (1997) Estimation of effects of quantitative trait loci in large complex pedigrees. Genetics 146:409–416

    PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Monks SA, Kaplan NL, Weir BS (1998) A comparative study of sibship tests of linkage and/or association. Am J Hum Genet 63:1507–1516

    Article  PubMed  CAS  Google Scholar 

  • Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA 102:2442–2447

    Article  PubMed  CAS  Google Scholar 

  • Mueller J (2004) Linkage disequilibrium for different scales and applications. Brief Bioinform 5:355–364

    Article  PubMed  CAS  Google Scholar 

  • Niebur W, Rafalski JA, Smith OS, Cooper M (2004) New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress. Brisbane, Australia, http://www.cropscience.org.au

    Google Scholar 

  • Nordborg M (2000) Linkage disequilibrium, gene trees, and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154:923–929

    PubMed  CAS  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J et al (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:e196

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Tavare S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90

    Article  PubMed  CAS  Google Scholar 

  • Oliehoek PA, Windig JJ, van Arendonk JA, Bijma P (2006) Estimating relatedness between individuals in general populations with a focus on their use in conservation programs. Genetics 173:483–496

    Article  PubMed  CAS  Google Scholar 

  • Olsen K, Caicedo A, Polato N, McClung A, McCouch S et al (2006) Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics 173:975–983

    Article  PubMed  CAS  Google Scholar 

  • Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J et al (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167:1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Olsen KM, Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics 162:941–950

    PubMed  CAS  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101:9885–9890

    Article  PubMed  CAS  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    PubMed  CAS  Google Scholar 

  • Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM et al (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294:1719–1723

    Article  PubMed  CAS  Google Scholar 

  • Pe’er I, Chretien YR, de Bakker PI, Barrett JC, Daly MJ et al (2006) Biases and reconciliation in estimates of linkage disequilibrium in the human genome. Am J Hum Genet 78:588–603

    Article  PubMed  CAS  Google Scholar 

  • Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571

    Article  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216

    PubMed  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK (2001) Deconstructing maize population structure. Nat Genet 28:203–204

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. Am J Hum Genet 69:1–14

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  Google Scholar 

  • Rabinowitz D (1997) A transmission disequilibrium test for quantitative trait loci. Hum Hered 47:342–350

    PubMed  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR et al (2001a) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  CAS  Google Scholar 

  • Remington DL, Ungerer MC, Purugganan MD (2001b) Map-based cloning of quantitative trait loci: progress and prospects. Genet Res 78:213–218

    Article  CAS  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  PubMed  CAS  Google Scholar 

  • Sebastiani P, Lazarus R, Weiss ST, Kunkel LM, Kohane IS et al (2003) Minimal haplotype tagging. Proc Natl Acad Sci USA 100:9900–9905

    Article  PubMed  CAS  Google Scholar 

  • Shaw SH, Carrasquillo MM, Kashuk C, Puffenberger EG, Chakravarti A (1998) Allele frequency distributions in pooled DNA samples: applications to mapping complex disease genes. Genome Res 8(2):111–123

    PubMed  CAS  Google Scholar 

  • Skøt L, Humpreys MO, Armstead I, Heywood S, Skøt K et al (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne. Mol Breed 15:233–245

    Article  CAS  Google Scholar 

  • Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516

    PubMed  CAS  Google Scholar 

  • Spielman RS, McGinnis RE, Ewens WJ (1994) The transmission/disequilibrium test detects cosegregation and linkage. Am J Hum Genet 54:559–560; author reply 560–553

    PubMed  CAS  Google Scholar 

  • Stich B, Melchinger AE, Piepho H-P, Heckenberger M, Maurer HP, Reif JC (2006) A new test for family based association mapping with inbred lines from plant breeding programs. Theor Appl Genet 113:1121–1130

    Article  PubMed  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc Ser B Stat Methodol 64:479–498

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Szalma SJ, Buckler EST, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333

    Article  PubMed  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Anderson LK, Stack SM, Doebley J et al (2002) Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.). Genetics 162:1401–1413

    Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF et al (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Thumma BR, Nolan MF, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Tracy WF, Whitt SR, Buckler ES (2006) Recurrent mutation and genome evolution: example of Sugary1 and the origin of sweet maize. Crop Sci 46:1–7

    Article  Google Scholar 

  • Wall JD, Pritchard JK (2003) Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 4:587–597

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y et al (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  PubMed  CAS  Google Scholar 

  • Wang J (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    PubMed  CAS  Google Scholar 

  • Wang Y, Rannala B (2005) In silico analysis of disease-association mapping strategies using the coalescent process and incorporating ascertainment and selection. Am J Hum Genet 76:1066–1073

    Article  PubMed  CAS  Google Scholar 

  • Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM et al (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF et al (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Google Scholar 

  • Wright SI, Gaut BS (2005) Molecular population genetics and the search for adaptive evolution in plants. Mol Biol Evol 22:506–519

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2006a) Genome-wide complex trait dissection through nested association mapping -in review

    Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006b) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Google Scholar 

  • Zhang K, Jin L (2003) Haplo block finder: haplotype block analyses. Bioinformatics 19:1300–1301

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK et al (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ersoz, E.S., Yu, J., Buckler, E.S. (2007). Applications of Linkage Disequilibrium and Association Mapping in Crop Plants. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6295-7_5

Download citation

Publish with us

Policies and ethics