Skip to main content

Tilling and Ecotilling for Crop Improvement

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

The modern crop scientist has a large amount of available nucleotide sequence information to identify genes of potential agronomic importance. Using reverse genetic approaches, specific genes can be disrupted, and hypotheses regarding gene function directly tested in vivo. Although a number of reverse genetic methods have been introduced, many are limited in application because they are organism-specific, expensive, transgenic or only transiently disrupt gene function. However, traditional mutagenesis using chemical mutagens has been widely used as a forward genetics strategy to create many new crop plant varieties at relatively low cost. Mutagens such as ethyl methanesulphonate (EMS), cause stable point mutations and thus produce an allelic series of truncation and missense changes that can provide a range of phenotypes. TILLING (Targeting Induced Local Lesions IN Genomes) uses traditional mutagenesis and SNP discovery methods for a reverse genetic strategy that is high in throughput, low in cost, and applicable to most organisms. Over the past six years, TILLING has moved from proof-of-concept to production with the establishment of publicly available services for Arabidopsis, maize, lotus, and barley. Pilot-scale projects have been completed on several other plant species, including wheat. The protocols developed for TILLING have been adapted for the discovery of natural nucleotide diversity, a method termed EcoTILLING. Like TILLING, EcoTILLING is general and has been applied to plants as diverse as Arabidopsis and poplar. We review here current TILLING and EcoTILLING technologies and discuss the progress that has been made in applying these methods to many different plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • An G, Jeong DH, Jung KH, Lee S, (2005) Reverse genetic approaches for functional genomics of rice. Plant Mol Biol 59:111–123

    Article  PubMed  CAS  Google Scholar 

  • Bradley JT, Reynolds SH, Weil C, Springer N, Burthner C, Young K, Bowers E, Coclomo, CA, Enns LC, Odden AR, Greena EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    Article  CAS  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  PubMed  CAS  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–50

    Article  PubMed  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S, (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff s (2004) Efficient discovery of DNA polymorphisms in natural populations by EcoTILLING. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann M, Oertel W, Berthold P, Hegemann P (2005) Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage. Nucleic Acids Res 33:e58

    Article  PubMed  Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L , Bohlmann J, Ellis BE, Douglas CJ, Cronk QC (2006) Use of EcoTILLING as an efficient SNP discovery tool to survey genetic variation in wild populations of populus trichocarpa. Mol Ecol 15:1367–1378

    Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    PubMed  CAS  Google Scholar 

  • Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54:375–401

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Guiderdoni E, Gynheung AN, Hsing Y-I, Moo Young E, Han C-D, Upadhyaya N, Ramachandran S, Qifa Z, Pereira A, Sundaresan V, Hei L, (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Dellaert LW, van der Veen JH (1982) EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res 93:109–123

    PubMed  CAS  Google Scholar 

  • Kusaba M (2004) RNA interference in crop plants. Curr Opin Biotechnol 15:139–143

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhang Y (2002) Reverse genetics by fast neutron mutagenesis in higher plants. Funct Integr Genomics 2:254–258

    Article  PubMed  CAS  Google Scholar 

  • Maluszynski M, Nichterlein K, Van Zanten L, Ahloowalia BS (2000) Officially released mutant varieties – the FAO/IAEA database. Mutat Breeding 20:1–88

    Google Scholar 

  • Mashal RD, Koontz J, Sklar J (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat Genet 9:177–183

    Article  PubMed  CAS  Google Scholar 

  • May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, Roh D, Pan X, Stein L, Freeling M, Alexander D, Martienssen R (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000a) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000b) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  Google Scholar 

  • McCarty DR, Settles MA, Suzuki M, Tan B.C., Latshaw S, Porch TG, Robin K, Baier J, Avigne W, Lai J, Messing J, Koch KE, Hannah, LC (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61

    Article  PubMed  CAS  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  PubMed  CAS  Google Scholar 

  • Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    Article  PubMed  CAS  Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115

    Article  PubMed  CAS  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti DA (2005) Reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  CAS  Google Scholar 

  • Stadler LJ, (1928) Genetic effects of X-rays in maize. Proc Natl Acad Sci USA 14:69–75

    Article  PubMed  CAS  Google Scholar 

  • Stadler LJ (1929) Chromosome number and the mutation rate in avena and triticum. Proc Natl Acad Sci USA 15:876–881

    Article  PubMed  CAS  Google Scholar 

  • Taylor NE, Greene EA (2003) PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res 31:3808–3811

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Zerr, T, Bowers E, Greene EA, Comai L, Henikoff S (2006) High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling. Nucleic Acids Res 34:e99

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit, P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  PubMed  CAS  Google Scholar 

  • Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297:99–102

    Article  PubMed  CAS  Google Scholar 

  • Youil R, Kemper BW, Cotton RG (1995) Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII. Proc Natl Acad Sci USA 92:87–91

    Article  PubMed  CAS  Google Scholar 

  • Zerr T, Henikoff S (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res 33:2806–2812

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Till, B.J., Comai, L., Henikoff, S. (2007). Tilling and Ecotilling for Crop Improvement. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6295-7_15

Download citation

Publish with us

Policies and ethics