Advertisement

Genetical Genomics: Successes and Prospects in Plants

  • Matias Kirst
  • Qibin Yu

Abstract

Sequencing of expressed genes from several plant species has revealed that there is a relatively high level of conservation in amino acid sequence among distantly related taxonomic groups, despite the tremendous phenotypic and developmental diversity in the plant kingdom. This diversity appears to be primarily created by polymorphisms that contribute to quantitative gene expression variation, rather than protein structure modification or creation of novel transcriptional units. A few studies have now demonstrated the heritability of gene expression and the dissection of its genetic control in plants. The approach – generally referred to as genetical genomics – relies on the transcript level and quantitative trait loci (QTL) analysis of the transcriptome in segregating populations. In this chapter we review the principles of genetical genomics, results of these studies in plants, and the use of this approach to dissect the genetic control of phenotypic traits of biological and agricultural interest. Although still in their infancy, pioneering genetical genomics studies have shown that this approach is valuable to unravel genetic networks implicated in transcription regulation, and for the identification of genes and pathways implicated in phenotypic variation. More important, they suggest that integrative genomic methods, that merge information from variation at the level of DNA, gene expression, protein and metabolites will be essential for understanding the complexity of plants.

Keywords

Quantitative Trait Locus Recombinant Inbred Quantitative Trait Locus Study Genetical Genomic Multiple Interval Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B,Blankenhorn EP, Blizard DA, Bolivar V, Brockmann GA, Buck KJ, Bureau JF, Casley WL, Chesler EJ, Cheverud JM, Churchill GA, Cook M, Crabbe JC, Crusio WE, Darvasi A, de Haan G, Demant P, Doerge RW, Elliott RW, Farber CR, Flaherty L, Flint J, Gershenfeld H, Gu J, Gu WK, Himmelbauer H, Hitzemann R, Hsu HC, Hunter K, Iraqi FA, Jansen RC, Johnson TE, Jones BC, Kempermann G, Lammert F, Lu L, Manly KF, Matthews DB, Medrano JF, Mehrabian M, Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Mountz JD, Nagase H, Nowakowski RS, O’Hara BR, Osadchuk AV, Paigen B, Palmer AA, Peirce JL, Pomp D, Rosemann M, Rosen GD, Schalkwyk LC, Seltzer Z, Settle S, Shimomura K, Shou SM, Sikela JM, Siracusa LD, Spearow JL, Teuscher C, Threadgill DW, Toth LA, Toye AA, Vadasz C, Van Zant G, Wakeland E, Williams RW, Zhang HG, Zou F (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4: 911–916PubMedGoogle Scholar
  2. Altenburg E, Muller HJ (1920) The genetic basis of truncate wing –an inconstant and modifiable character in Drosophila. Genetics 5:1–59PubMedGoogle Scholar
  3. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  4. Auger DL, Gray AD, Ream TS, Kato A, Coe EH, Birchler JA (2005) Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics 169:389–397PubMedCrossRefGoogle Scholar
  5. Baltimore D (2001) Our genome unveiled. Nature 409:814–816PubMedCrossRefGoogle Scholar
  6. Beavis WD. (1997). QTL analysis: power, precision and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162Google Scholar
  7. Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA 102:1572–1577PubMedCrossRefGoogle Scholar
  8. Brem RB, Storey JD, Whittle J, Kruglyak L (2005) Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436:701–703PubMedCrossRefGoogle Scholar
  9. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755PubMedCrossRefGoogle Scholar
  10. Bystrykh L, Weersing E, Vellenga E, Manley E, Williams R, Cooke M, De Haan G (2003) A genetical genomics approach to identify transcriptional pathways in hematopoietic stem cells. Exp Hematol 31:137–137Google Scholar
  11. Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang JT, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke MP, de Haan G (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 37:225–232PubMedCrossRefGoogle Scholar
  12. Chesler EJ, Lu L, Shou SM, Qu YH, Gu J, Wang JT, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233–242PubMedCrossRefGoogle Scholar
  13. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  14. de Koning DJ, Haley CS (2005) Genetical genomics in humans and model organisms. Trends Genet 21:377–381PubMedCrossRefGoogle Scholar
  15. DeCook R, Lall S, Nettleton D, Howell SH (2006) Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172:1155–1164PubMedCrossRefGoogle Scholar
  16. Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082PubMedCrossRefGoogle Scholar
  17. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294PubMedGoogle Scholar
  18. Dumas P, Sun YL, Corbeil G, Tremblay S, Pausova Z, Kren V, Krenova D, Pravenec M, Hamet P, Tremblay J (2000) Mapping of quantitative trait loci (QTL) of differential stress gene expression in rat recombinant inbred strains. J Hypertens 18:545–551PubMedCrossRefGoogle Scholar
  19. Filatov V, Dowdle J, Smirnoff N, Ford-Lloyd B, Newbury HJ, Macnair MR (2006) Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Mol Ecol 15:3045–3059PubMedCrossRefGoogle Scholar
  20. Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064PubMedCrossRefGoogle Scholar
  21. Gibson G, Weir B (2005) The quantitative genetics of transcription. Trends Genet 21:616–623PubMedCrossRefGoogle Scholar
  22. Gibson G, Riley-Berger R, Harshman L, Kopp A, Vacha S, Nuzhdin S, Wayne M (2004) Extensive sex-specific nonadditivity of gene expression in Drosophila melanogaster. Genetics 167:1791–1799PubMedCrossRefGoogle Scholar
  23. Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, Martin C,Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP,Miguel T, Paszkowski U, Zhang SP, Colbert M, Sun WL, Chen LL, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu YS, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  24. Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63CrossRefGoogle Scholar
  25. Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253PubMedCrossRefGoogle Scholar
  26. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391PubMedCrossRefGoogle Scholar
  27. Juenger TE, Wayne T, Boles S, Symonds VV, McKay J, Coughlan SJ (2006) Natural genetic variation in whole-genome expression in Arabidopsis thaliana: the impact of physiological QTL introgression. Mol Ecol 15:1351–1365PubMedCrossRefGoogle Scholar
  28. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216PubMedGoogle Scholar
  29. Karp CL, Grupe A, Schadt E, Ewart SL, Keane-Moore M, Cuomo PJ, Kohl J, Wahl L, Kuperman D, Germer S, Aud D, Peltz G, Wills-Karp M (2000) Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1:221–226PubMedCrossRefGoogle Scholar
  30. King MC, Wilson AC (1975) Evolution at 2 levels in humans and chimpanzees. Science 188:107–116PubMedCrossRefGoogle Scholar
  31. Kirst M, Basten CJ, Myburg AA, Zeng ZB, Sederoff RR (2005) Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid. Genetics 169:2295–2303PubMedCrossRefGoogle Scholar
  32. Kirst M, Myburg AA, De Leon JPG, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol 135:2368–2378PubMedCrossRefGoogle Scholar
  33. Korstanje R, Paigen B (2002) From QTL to gene: the harvest begins. Nat Genet 31:235–236PubMedCrossRefGoogle Scholar
  34. Lall S, Nettleton D, DeCook R, Che P, Howell SH (2004) Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in Arabidopsis. Genetics 167:1883–1892PubMedCrossRefGoogle Scholar
  35. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  36. Lembertas AV, Perusse L, Chagnon YC, Fisler JS, Warden CH, PurcellHuynh DA, Dionne FT, Gagnon J, Nadeau A, Lusis AJ, Bouchard C (1997) Identification of an obesity quantitative trait locus on mouse chromosome 2 and evidence of linkage to body fat and insulin on the human homologous region 20q. J Clin Invest 100:1240–1247PubMedCrossRefGoogle Scholar
  37. Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–151PubMedCrossRefGoogle Scholar
  38. Li J, Burmeister M (2005) Genetical genomics: combining genetics with gene expression analysis. Hum Mol Genet 14:R163–R169PubMedCrossRefGoogle Scholar
  39. Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–339PubMedCrossRefGoogle Scholar
  40. Matsuzaki H, Dong SL, Loi H, Di XJ, Liu GY, Hubbell E, Law J, Berntsen T, Chadha M, Hui H, Yang GR, Kennedy GC, Webster TA, Cawley S, Walsh PS, Jones KW, Fodor SPA, Mei R (2004) Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Meth 1:109–111CrossRefGoogle Scholar
  41. McGall G, Labadie J, Brock P, Wallraff G, Nguyen T, Hinsberg W (1996) Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc Natl Acad Sci USA 93:13555–13560PubMedCrossRefGoogle Scholar
  42. Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952PubMedCrossRefGoogle Scholar
  43. Monks SA, Leonardson A, Zhu H, Cundiff P, Pietrusiak P, Edwards S, Phillips JW, Sachs A, Schadt EE (2004) Genetic inheritance of gene expression in human cell lines. Amer J Hum Genet 75:1094–1105PubMedCrossRefGoogle Scholar
  44. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747PubMedCrossRefGoogle Scholar
  45. Myburg AA, Griffin AR, Sederoff RR, Whetten RW (2003) Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet 107:1028–1042PubMedCrossRefGoogle Scholar
  46. Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski T, Berg JP, Ballin J, McCormick M, Norton J, Pollock T, Sumwalt T, Butcher L, Porter D, Molla M, Hall C, Blattner F, Sussman MR, Wallace RL, Cerrina F, Green RD (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res 12:1749–1755PubMedCrossRefGoogle Scholar
  47. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726PubMedCrossRefGoogle Scholar
  48. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato – comparison across species, generations, and environments. Genetics 127:181–197PubMedGoogle Scholar
  49. Perez-Enciso M (2004) In silico study of transcriptome genetic variation in outbred populations. Genetics 166:547–554PubMedCrossRefGoogle Scholar
  50. Piepho HP (2001) A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157:425–432PubMedGoogle Scholar
  51. Purugganan MD (2000) The molecular population genetics of regulatory genes. Mol Ecol 9:1451–1461PubMedCrossRefGoogle Scholar
  52. Ronald J, Akey JM, Whittle J, Smith EN, Yvert G, Kruglyak L (2005) Simultaneous genotyping, gene-expression measurement, and detection of allele-specific expression with oligonucleotide arrays. Genome Res 15:284–291PubMedCrossRefGoogle Scholar
  53. Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J, Cardle L, Marshall DF, Waugh R (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54CrossRefGoogle Scholar
  54. Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560PubMedGoogle Scholar
  55. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302PubMedCrossRefGoogle Scholar
  56. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, GuhaThakurta D, Sieberts SK, Monks S, Reitman M, Zhang CS, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang LM, Castle J, Zhu HY, Kash SF, Drake TA, Sachs A, Lusis AJ (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717PubMedCrossRefGoogle Scholar
  57. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary-DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  58. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445PubMedCrossRefGoogle Scholar
  59. Storey JD, Akey JM, Kruglyak L (2005) Multiple locus linkage analysis of genomewide expression in yeast. Plos Biol 3:1380–1390CrossRefGoogle Scholar
  60. Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic-factors contributing to heterosis in a hybrid from 2 elite maize inbred lines using molecular markers. Genetics 132:823–839PubMedGoogle Scholar
  61. Szalma SJ, Buckler ES, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333PubMedCrossRefGoogle Scholar
  62. Tautz D (2000) Evolution of transcriptional regulation. Curr Opin Genet Dev 10:575–579PubMedCrossRefGoogle Scholar
  63. Vuylsteke M, van Eeuwijk F, Van Hummelen P, Kuiper M, Zabeau M (2005) Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171:1267–1275PubMedCrossRefGoogle Scholar
  64. Wayne ML, McIntyre LM (2002) Combining mapping and arraying: An approach to candidate gene identification. Proc Natl Acad Sci USA 99:14903–14906PubMedCrossRefGoogle Scholar
  65. West MAL, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, St Clair DA, Michelmore RW (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795PubMedCrossRefGoogle Scholar
  66. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419PubMedCrossRefGoogle Scholar
  67. Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R, Kruglyak L (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35:57–64PubMedCrossRefGoogle Scholar
  68. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976PubMedCrossRefGoogle Scholar
  69. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar
  70. Zou F, Fine ZP, Hu JH, Lin DY (2004) An efficient resampling method for assessing genome-wide statistical significance in mapping quantitative trait loci. Genetics 168:2307–2316PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Matias Kirst
    • 1
  • Qibin Yu
    • 1
  1. 1.School of Forest Resources and Conservation, University of FloridaGainesvilleUSA

Personalised recommendations