Skip to main content

Applications of Light and Electron Microscopic Techniques in Liposome Research

  • Chapter
Nanomaterials and Nanosystems for Biomedical Applications

Abstract

Liposomes and some other vesicular systems are widely used as delivery vehicles for bioactive compounds. Successful applications of these carrier systems in drug delivery, gene therapy and other health related areas depend on comprehensive understanding of their physical properties including polydispersity and morphology. Variations in size and shape of the carrier systems are indications of their stability and shelf life and can guide scientists in improving the therapeutic formulations. Towards this end microscopic techniques can provide vital information on size, configuration, stability and mechanisms of cellular uptake of particles on micro and nanoscales as discussed in this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida JD, Edwards DC, Brand CM, and Heath TD. Formation of virosomes from influenza subunits and liposomes. Lancet 306: 899–901 (1975).

    Article  Google Scholar 

  • Brunke R. Sphingosomes in skin-care. Manufacturing Chemist 61 (7): 36–37 (1990).

    Google Scholar 

  • Cevc G, and Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradient and hydration force. Biochim Biophys Acta 1104: 226–232 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Cevc G. Transferosomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration and transdermal drug delivery. Critical Reviews in Therapeutic Drug Carrier Systems 13 (3–4): 257–388 (1996).

    PubMed  CAS  Google Scholar 

  • Chambers MA, Wright DC, Brisker J, Williams A, Hatch G, Gavier-Widen D, Hall G, Marsh PD, and Hewinson RG. A single dose of killed Mycobacterium bovis BCG in a novel class of adjuvant (Novasome™) protects guinea pigs from lethal tuberculosis. Vaccine, 22 (8): 1063–1071 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Erdogan S. In Vitro and In Vivo Studies on Drug Delivery Systems for the Diagnosis and Scintigraphic Imaging of Deep Vein Thrombosis. Hacettepe University, Institute of Health Sciences. Ph.D. Thesis (Radiopharmacy Program), Ankara, Turkey (2001).

    Google Scholar 

  • Erdogan S, Ozer AY, and Bilgili H. In vivo behaviour of vesicular urokinase. Int. J. Pharm. 295: 1–6 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Gebicki JM, and Hicks M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 243 (5404): 232–234 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Gorner P, Wrobel R, and Fabries JF. Experimental method to determine the efficiency of aerosolsamplers using the coulter counter. J. Aerosol Science, 31 (Suppl 1): 268–269 (2000).

    Article  Google Scholar 

  • Kara J, Mach O, and Cerna J. Replication of Rous sarcoma virus and the biosynthesis of the oncogenic subviral ribonucleoprotein particles (“virosomes”) in the mitochondria isolated from Rous sarcoma tissue. Biochim Biophys Res Com 44 (1): 162–169 (1971).

    Article  CAS  Google Scholar 

  • Kiselyova OI, and Yaminsky IV. Proteins and membrane-protein complexes. In: Yaminsky IV. ed. Scanning Probe Microscopy of Biopolymers. Moscow: Scientific World, p. 41 (1997).

    Google Scholar 

  • Korkmaz M, Ozer AY, and Hincal AA. DTPA Niosomes in diagnostic imaging. (Chapter: 12), in: Synthetic Surfactant Vesicles-Niosomes and Other Non-phospholipid Vesicular Systems. Ed: I.F. Uchegbu, Harwood Academic Publisher, (2000) pp: 227–243.

    Google Scholar 

  • Lasic DD. Liposomes from Physics to Applications. Elsevier, Amsterdam, New york, Tokyo (1993).

    Google Scholar 

  • Lasic DD, and Papahadjopoulos D. (Ed.), Medical Applications of Liposomes. Elsevier Science B.V., The Netherlands, pp 429–449 (1998).

    Google Scholar 

  • Maeda N, Senden TJ, and di Meglio JM. Micromanipulation of phospholipid bilayers by atomic force microscopy. Biochim. Biophys. Acta 1564: 165–172 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Martin DS, and Weightman P. Fracture of a fatty acid multilayer film. Surf. Sci. 464: 23–33 (2000).

    Article  CAS  Google Scholar 

  • Mosharraf M, and Nystrom C. Solubility characterization of practically insoluble drugs using the Coulter counter principle. Int. J. Pharm. 122 (1–2): 57–67 (1995).

    Article  CAS  Google Scholar 

  • Mozafari MR, Reed CJ, Rostron C, Kocum C, and Piskin E. Formation and characterisation of non-toxic anionic liposomes for delivery of therapeutic agents to the pulmonary airways. Cell. Mol. Biol. Lett. 7 (2): 243–244 (2002).

    PubMed  Google Scholar 

  • Mozafari MR, and Mortazavi SM. (eds.) Nanoliposomes: from Fundamentals to Recent Developments. Trafford Pub. Ltd., Oxford, UK (2005).

    Google Scholar 

  • Mozafari MR, Reed CJ, Rostron C, and Hasirci V. A review of scanning probe microscopy investigations of liposome-DNA complexes. J. Liposome Res. 15: 93–107 (2005).

    PubMed  CAS  Google Scholar 

  • New RRC. Liposomes: A Practical Approach. IRL Press, at Oxford Univ. Press, Oxford, New York, Tokyo (1990).

    Google Scholar 

  • Strom G, and Crommelin DJA. Liposomes: Quo vadis? PSTT, 1: 19–31 (1998).

    Google Scholar 

  • Talsma H, Jousma H, Nicolay K, and Crommelin DJA. Multilamellar or multivesicular vesicles? Int. J. Pharm. 37: 171–173 (1987).

    Article  CAS  Google Scholar 

  • Turker S. Nuclear Imaging Techniques in the Comparison of Diclophenac Sodium Drug Delivery Systems with its Conventional Dosage Forms in the Treatment of Rhomateuid Arthritis. Ph.D. Thesis, Hacettepe Univ., Inst. Health Sci., Radiopharmacy Program, Ankara (2004).

    Google Scholar 

  • Uchegbu IF, and Vyas SP. Nonionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 172: 33–70 (1998).

    Article  CAS  Google Scholar 

  • Vinay DS, Raje M, and Mishra GC. Characterization of a novel co-stimulatory molecule: A 155–160 kD B cell surface protein provides accessory help to CD4+ T cells to proliferate and differentiate. Molecular Immunology, 33 (1): 1–14 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Weiner N, Martin F, and Riaz M. Liposomes as a drug delivery system. Drug Dev. Ind. Pharm. 15: 1523–1554 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ozer, A.Y. (2007). Applications of Light and Electron Microscopic Techniques in Liposome Research. In: Mozafari, M.R. (eds) Nanomaterials and Nanosystems for Biomedical Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6289-6_10

Download citation

Publish with us

Policies and ethics