Skip to main content

Thermostable proteins as probe for the design of advanced fluorescence biosensors

  • Review Paper
  • Chapter
  • First Online:
Life in Extreme Environments

Abstract

In this review we explore the advantages deriving from the use of either enzymes or sugar binding proteins isolated from thermophilic organisms to develop stable fluorescence biosensors. We report on a novel approach to address the consumption of the analyte by enzyme-based biosensors, namely the utilization of apo-enzymes as non-active forms of proteins which are still able to bind the ligand but cannot transform it into product. We also report recent studies in which the fluorescence labeling of a naturally thermostable binding protein allows a quantitative determination of glucose.

This work is dedicated to Prof. Koki Horikoshi for his outstanding contribution to the knowledge of the world of extremophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

IAANS:

2-(4′-(iodoacetamido)anilino) naphthalene- 6-sulfonic acid (IAANS)

ANS:

1-(anilino)-naphtalene-8-sulfonate

FRET:

fluorescence resonance energy transfer

LED:

light emitting diode

GD:

glucose dehydrogenase

BSGK:

glucokinase from Bacillus stearothermophilus

Ph-SBP:

sugar-binding protein from Pyrococcus horikoshii

References

  • Aleshin AE, Zeng C, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB (1998) The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose 6-phosphate. Structure 6(1):39–50

    Article  PubMed  CAS  Google Scholar 

  • Bennet WSJ, Steitz TA (1980) Structure of a complex between yeast hexokinase A and glucose: structure determination and refinement at 3.5 Å resolution. J Mol Biol 140(2):183–209

    Article  Google Scholar 

  • Boos W, Lucht JM (1995) Periplasmic binding-protein-dependent ABC transports. In: Lin E (ed) E. coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington DC, pp 1175–1209

    Google Scholar 

  • Colacino F, Crichton RR (1997) Enzyme stabilisation: the state of the art. Biotechnol Genet Eng Rev 14:211–277

    PubMed  CAS  Google Scholar 

  • D’Auria S, Barone R, Rossi M, Nucci R, Barone G, Fessas D, Bertoli E, Tanfani F (1997) Effects of temperature and SDS on the structure of β-glycosidase from the thermophilic archaeon Sulfolobus solfataricus. Biochem J 323:833–840

    PubMed  CAS  Google Scholar 

  • D’Auria S, Nucci R, Rossi M, Grycznisky I, Malak H, Lakowicz JR (1999a) The β-glycosidase from the Archaeon Sulfolobus solfataricus: structure and activity in the presence of alcohol. J. Biochemistry 126(3):545–552

    CAS  Google Scholar 

  • D’Auria S, Nucci R, Rossi M, Gryczynski I, Gryczynski Z, Lakowicz JR (1999b) The β-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: enzyme activity and conformational dynamics at temperatures above 100°C. Biophys Chem 81:23–31

    Article  CAS  Google Scholar 

  • D’Auria S, Herman P, Lakowicz JR, Bertoli E, Tanfani F, Rossi M, Manco G (2000) The thermophilic esterase from Archaeoglobus fulgidus: structure and conformational dynamics at high temperature. Proteins 38:351–360

    Article  PubMed  CAS  Google Scholar 

  • D’Auria S, Lakowicz JR (2001) Enzyme fluorescence as a sensing tool: new perspectives in biotechnology. Curr Opin Biotechnol 1:99–104

    Article  Google Scholar 

  • D’Auria S, Moracci M, Febbraio F, Tanfani F, Nucci R, Rossi M (1998) Structure–function studies on β-glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability. Biochimie 80:949–957

    Article  PubMed  CAS  Google Scholar 

  • Feldman I (1984) Ionic strength dependence of glucose binding by yeast hexokinase isoenzymes. Biochem J 217(1):335–337

    PubMed  CAS  Google Scholar 

  • Feldman I, Norton GE (1980) Effects of glucose and magnesium ion on the quenching of yeast hexokinase fluorescence by acrylamide. Biochim Biophys Acta 615(1):132–142

    PubMed  CAS  Google Scholar 

  • Flocco MM, Mowbray SL (1994) The 1.9 Å X-ray structure of a closed unliganded form of the periplasmic glucose/galactose receptor from Salmonella typhimurium. J Biol Chem 269:8931–8936

    PubMed  CAS  Google Scholar 

  • Gilardi G, Mei G, Rosato N, Finazzi-Agro’ AF, Cass AEG (1997) Spectroscopic properties of an engineered maltose-binding protein. Protein Eng 10:479–486

    Article  PubMed  CAS  Google Scholar 

  • Gilardi G, Zhou LQ, Hibbert L, Cass AEG (1994) Engineered the maltose binding protein for reagentless fluorescence sensing. Anal Chem 66:3840–3847

    Article  PubMed  CAS  Google Scholar 

  • Goward CR, Scawen MD, Atkinson T (1987) The inhibition of glucokinase and glycerokinase from Bacillus stearothermophilus by the triazine dye procion blue MX-3G. Biochem J 246:83–88

    PubMed  CAS  Google Scholar 

  • Gryczynski I, Lakowicz JR, Gryczynski Z (1999) Polarization sensing with visual detection. Anal Chem 71:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Gryczynski Z, Gryczynski I, Lakowicz JR (2000) Simple apparatus for polarization sensing of analytes. Opt Eng 39:2351–2358

    Article  CAS  Google Scholar 

  • Honzatko RB, Aleshin AE, Zeng C, Bartunik HD, Fromm HJ (1998) Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate. J Mol Biol 282(2):345–357

    Article  PubMed  Google Scholar 

  • Ishikawa H, Maeda T, Hikita H (1987) Initial-rate studies of a thermophilic glucokinase from Bacillus stearothermophilus. Biochem J 248:13–20

    PubMed  CAS  Google Scholar 

  • Jaenicke R Schuring H Beaucamp N, Ostendorp R (1996) Structure and stability of hyperstable proteins: glycolitic enzymes from hyperthermophilic bacterium Thermotoga maritima. Adv Protein Chem 48:181–269

    Article  PubMed  CAS  Google Scholar 

  • Kramp DC, Feldman I (1978) Tryptophan distribution in yeast hexokinase isoenzyme B. Biochim Biphys Acta 537:406–416

    CAS  Google Scholar 

  • Lakowicz JR (1995) Advances in fluorescence sensing technology II. Proc SPIE 2388:159–170

    Article  Google Scholar 

  • Lakowicz JR, Szmacinski H (1993) Fluorescence lifetime-based sensing of pH, Ca2+, K+ and glucose. Sensors Actuators B 11:133–143

    Article  Google Scholar 

  • Lakowicz JR, Gryczynski I, Gryczynski Z, Dattelbaum JD (1999) Anisotropy-based sensing with reference fluorophores. Anal Biochem 267:397–405

    Article  PubMed  CAS  Google Scholar 

  • Luck LA, Falke JJ (1991) Open conformation of a substrate binding cleft: 19F NMR studies of cleft angle in the d-galactose chemosensory receptor. Biochemistry 30:6484–6490

    Article  PubMed  CAS  Google Scholar 

  • Marabotti A, D’Auria S, Rossi M, Facchiano AM (2004) Theoretical model of the three-dimensional structure of a sugar-binding protein from Pyrococcus horikoshii: structural analysis and sugar-binding simulation. Biochem J 380:677–684

    Article  PubMed  CAS  Google Scholar 

  • Marvin JS, Hellinga HW (1998) Engineering biosensors by introducing fluorescent allosteric signal transducers: construction of a novel glucose sensor. J Am Chem Soc 120:7–11

    Article  CAS  Google Scholar 

  • McDonald RC, Steitz TA, Engelman DM (1979) Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate. Biochemistry 18(2):338–342

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca++ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  • Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20:17–25

    Article  PubMed  CAS  Google Scholar 

  • Romoser VA, Hinkle PM, Persechini A (1997) Detection of living cells of Ca++ dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. J Biol Chem 272:13270–13274

    Article  PubMed  CAS  Google Scholar 

  • Smith LD, Budgen N, Bungard J, Danson MJ, Hough DV (1989) Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biochem J 261:973–977

    PubMed  CAS  Google Scholar 

  • Spichiger-Keller UE (1998) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, New York, pp 313–328

    Google Scholar 

  • Staiano M, Sapio MR, Scognamiglio V, Marabutti A, Facchiano AM, Bazzicalupo P, Rossi M, D’Auria S (2004) A thermostable sugar-binding protein from the Archaeon Pyrococcus horikoshii as a probe for the development of a stable fluorescence biosensor for diabetic patients. Biotechnol Prog 20:1572–1577

    Article  PubMed  CAS  Google Scholar 

  • Sthal S (1993) Thermostability of enzymes. In: Gupta MN (ed) Springer-Verlag, Berlin, pp 45–74

    Google Scholar 

  • Sun MC, Tolliday N, Vetriani C, Robb FT, Clark DS (1999) Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Protein Sci 8:1056–1063

    Article  PubMed  CAS  Google Scholar 

  • Szmacinski H, Lakowicz JR (1994) Life-time based sensing. Plenum Press, 1991–1994, 233 Spring Str. New York, NY 10013. Top Fluorescence Spectrosc 4:295–334

    Article  CAS  Google Scholar 

  • Tolosa L, Gryczynski I, Eichhorn LR, Dattelbaum JD, Castellano FN, Rao G, Lakowicz JR (1999) Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein. Anal Biochem 267:114–120

    Article  PubMed  CAS  Google Scholar 

  • Tomita K, Nagata K, Kondo H, Shiraishi T, Tsubota H, Suzuki H, Ochi H (1990) Thermostable glucokinase from Bacillus stearothermophilus and its analytical application. Ann NY Acad Sci 613:421–425

    Article  PubMed  CAS  Google Scholar 

  • Ureta T, Medina C, Preller A (1987) The evolution of hexokinases. Arch Biol Med Exp 20(3–4):343–357

    PubMed  CAS  Google Scholar 

  • Wolfbeis OS (2000) Fiber-optic chemical sensors and biosensors. Anal Chem 72:81R–89R

    Article  PubMed  CAS  Google Scholar 

  • Woolfitt AR, Kellet GL, Hoggett JG (1998) The binding of glucose and nucleotides to hexokinase from Saccharomyces cerevisiae. Biochim Biophys Acta 952(2):238–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabato D’Auria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

de Champdoré, M. et al. (2006). Thermostable proteins as probe for the design of advanced fluorescence biosensors. In: Amils, R., Ellis-Evans, C., Hinghofer-Szalkay, H. (eds) Life in Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6285-8_3

Download citation

Publish with us

Policies and ethics