Skip to main content

Life strategy, ecophysiology and ecology of seaweeds in polar waters

  • Review
  • Chapter
  • First Online:
Book cover Life in Extreme Environments

Abstract

Polar seaweeds are strongly adapted to the low temperatures of their environment, Antarctic species more strongly than Arctic species due to the longer cold water history of the Antarctic region. By reason of the strong isolation of the Southern Ocean the Antarctic marine flora is characterized by a high degree of endemism, whereas in the Arctic only few endemic species have been found so far. All polar species are strongly shade adapted and their phenology is finely tuned to the strong seasonal changes of the light conditions. The paper summarises the present knowledge of seaweeds from both polar regions with regard to the following topics: the history of seaweed research in polar regions; the environment of seaweeds in polar waters; biodiversity, biogeographical relationships and vertical distribution of Arctic and Antarctic seaweeds; life histories and physiological thallus anatomy; temperature demands and geographical distribution; light demands and depth zonation; the effect of salinity, temperature and desiccation on supra-and eulittoral seaweeds; seasonality of reproduction and the physiological characteristics of microscopic developmental stages; seasonal growth and photosynthesis; elemental and nutritional contents and chemical and physical defences against herbivory. We present evidence to show that specific characteristics and adaptations in polar seaweeds help to explain their ecological success under environmentally extreme conditions. In conclusion, as a perspective and guide for future research we draw attention to many remaining gaps in knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C (2002) Seasonal variation in ecological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defence systems against high light stress. Mar Biol 140:1087–1095

    Article  CAS  Google Scholar 

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    CAS  Google Scholar 

  • Amsler CD, Neushul M (1991) Photosynthetic physiology and chemical composition of spores of the kelps Macrocystis pyrifera, Nereocystis luetkeana, Laminaria farlowii, and Pterygophora californica (Phaeophyceae). J Phycol 27:26–34

    Article  CAS  Google Scholar 

  • Amsler CD, Laur DR, Quetin LB, Rowley RJ, Ross R, Neushul M. (1990) Quantitative analysis of the vertical distribution of overstory macroalgae near Anvers Island. Antarctica. Antarctic J US 25:201–202

    Google Scholar 

  • Amsler CD, Rowley RJ, Laur DR, Quetin LB, Ross RM (1995) Vertical distribution of Antarctic Peninsular macroalgae: cover, biomass and species composition. Phycologia 34:424–430

    Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1998) Chemical defenses against herbivory in the Antarctic marine macroalgae Iridaea cordata and Phyllophora antarctica (Rhodophyceae). J Phycol 34:53–59

    Article  CAS  Google Scholar 

  • Amsler CD, Iken KB, McClintock JB, Baker BJ (2001) Secondary metabolites from Antarctic organisms and their ecological implications. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 267–300

    Google Scholar 

  • Amsler CD, Okogbue IN, Landry DM, Amsler MO, McClintock JB, Baker BJ (2005a) Potential chemical defenses against diatom fouling in Antarctic macroalgae. Bot Mar 48:318–322

    Article  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005b) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Pensinsula. Mar Ecol Prog Ser 294:141–159

    CAS  Google Scholar 

  • Andersson B, Salter AH, Virgin I, Vass I, Styring S (1992) Photodamage to photosystem II-primary and secondary events. J Photochem Photobiol B: Biol 15:15–31

    Article  Google Scholar 

  • Ankisetty S, Nandiraju S, Win H, Park YC, Amsler CD, McClintock JB, Baker JA, Diyabalanage TK, Pasaribu A, Singh MP, Maiese WM, Walsh RD, Zaworotko MJ, Baker BJ (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic Peninsula. J Nat Prod 67:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Arnoud PM (1974) Contributions à la binomie marine bentique des régions Antarctiques et subantarctiques. Thethys 6:465–653

    Google Scholar 

  • Arnold KE, Manley SL (1985) Carbon allocation in Macrocystis pyrifera (Phaeophyta): intrinsic variability in photosynthesis and respiration. J Phycol 21:147–167

    Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Topics in photosynthesis, vol 9. Elsevier Science Publishers, Amsterdam, pp 89–109

    Google Scholar 

  • Atkinson M, Smith S (1983) C:N:P ratios of benthic marine plants. Limnol Oceanogr 28:568–574

    Article  CAS  Google Scholar 

  • de Baar HWJ (1994) Von Liebig’s law of the minimum and plankton ecology. Progr Oceoanogr 33:347–386

    Article  Google Scholar 

  • de Baar HJW, de Jong JTM, Bakker DCE, Löscher BM, Veth C, Bathmann U, Smetacek, V (1995) Importance of Iron for Plankton Blooms and Carbon Dioxide Drawdown in the Southern Ocean. Nature 373:412–415

    Article  Google Scholar 

  • Becker EW (1982) Physiological studies on Antarctic Prasiola crispa and Nostoc commune at low temperatures. Polar Biol 1:99–104

    CAS  Google Scholar 

  • Bird CJ, Mc Lachlan JL (1992) Seaweed flora of the Maritimes, I. Rhodophyta-The red algae. Biopress Ltd. Bristol

    Google Scholar 

  • Bischof K, Gómez J, Molis M, Hanelt D, Karsten U, Lüder UH, Roleda U, Zacher K, Wiencke C (2006) UV radiation shapes seaweed communities. Rev Environ Sci Biotechnol (in press)

    Google Scholar 

  • Bischoff B, Wiencke C (1993) Temperature requirements for growth and survival of macroalgae from Disko-Island (Greenland). Helgol Mar Res 47:167–191

    Google Scholar 

  • Bischoff B, Wiencke C (1995a) Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperate distributions. Eur J Phycol 30:19–27

    Article  Google Scholar 

  • Bischoff B, Wiencke C (1995b) Temperature adaptation in strains of the amphi-equatorial green alga Urospora penicilliformis (Acrosiphoniales) – biogeographical implications. Mar Biol 122:681–688

    Article  Google Scholar 

  • Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32:525–535

    Article  Google Scholar 

  • Bolser RC, Hay ME (1996) Are tropical plants better defended? Palatability and defenses of temperate vs tropical seaweeds. Ecology 77:2269–2286

    Article  Google Scholar 

  • Bolton JJ, Lüning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94

    Article  Google Scholar 

  • Brand TE (1974) Trophic interactions and community ecology of the shallow-water marine benthos along the Antarctic Peninsula. PhD Dissertation, University of California, Davis, pp 1–220

    Google Scholar 

  • Breeman AM (1988) Relative importance of temperatures and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgoländer Meeresunters 42:199–241

    Article  Google Scholar 

  • Brouwer PEM (1996) In situ photosynthesis and estimated annual production of the red macroalga Myriogramme mangini in relation to underwater irradiance at Signy Island (Antarctica). Antarctic Sci 8:245–252

    Google Scholar 

  • Brown AD, Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J General Microbiol 72:589–591

    CAS  Google Scholar 

  • Buggeln RG (1983) Photoassimilate translocation in brown algae. Progr Phycol Res 2:283–332

    Google Scholar 

  • Cabello-Pasini A, Alberte RS (2001) Expression of carboxylating enzymes in Laminaria setchelli (Phaeophyceae). Phycologia 40:351–358

    Article  Google Scholar 

  • Chapman ARO, Craigie JS (1977) Seasonal growth in Laminaria longicruris: relation with dissolved inorganic nutrients and internal reserves of nitrogen. Mar Biol 40:197–205

    Article  CAS  Google Scholar 

  • Chapman ARO, Craigie JS (1978) Seasonal growth in Laminaria longicruris: relations with reserve carbohydrate storage and production. Mar Biol 46:209–213

    Article  CAS  Google Scholar 

  • Chapman ARO, Lindley JE (1980). Seasonal growth of Laminaria longicruris in the High Arctic in relation to irradiance and dissolved nutrient concentration. Mar Biol 57:1–5

    Article  CAS  Google Scholar 

  • Clarke DL (1990) Arctic Ocean ice cover; geologic history and climatic significance. In: Grantz A, Johnson L, Sweeney JL (eds) The Arctic Ocean region. Geol. Soc. America, Boulder Colo, pp 53–62

    Google Scholar 

  • Clarke A, Barnes KA, Hodgson DA (2005) How isolated is Antarctica. Trends Ecol Evol 20:1–3

    Article  PubMed  Google Scholar 

  • Clayton MN (1987) Isogamy and a fucalean type of life history in the Antarctic brown alga Ascoseira mirabilis (Ascoseirales, Phaeophyta). Bot Mar 30:447–455

    Google Scholar 

  • Clayton, MN (1988) Evolution and life histories of brown algae. Bot Mar 31:379–387

    Google Scholar 

  • Clayton MN, Ashburner CM (1990) The anatomy and ultrastructure of "conducting channels" in Ascoseira mirabilis (Ascoseirales, Phaeophyceae). Bot Mar 33:63–70

    Google Scholar 

  • Clayton MN, Wiencke C (1990) The anatomy, life history and development of the Antarctic brown alga Phaeurus antarcticus (Desmarestiales, Phaeophyceae). Phycologia 29:303–315

    Google Scholar 

  • Clayton MN, Wiencke C, Klöser H (1997) New records of temperate and sub-Antarctic marine benthic macroalgae from Antarctica. Polar Biol 17:141–149

    Article  Google Scholar 

  • CLIMAP Project Members (1981) Seasonal re constructions of the earths surface at the last glacial masimum. The Geol. Soc. of America Map and Chart Service MC-36, Washington DC

    Google Scholar 

  • Cormaci M, Furnari G, Scammacca B (1992) The benthic algal flora of Terra Nova Bay (Ross Sea, Antarctica). Bot Mar 35:541–552

    Google Scholar 

  • Crame JA (1993) Latitudinal range fluctuations in the marine realm through geological time. Trends Ecol Evol 8:162–266

    Article  Google Scholar 

  • Cross WE, Wilce RT, Fabijan MF (1987). Effects of experimental releases of oil and dispersed oil on Arctic nearshore macrobenthos. III, Macroalgae. Arctic 40(Suppl. 1):211–219

    Google Scholar 

  • Czerpak R, Mical A, Gutkowski R, Siegien I (1981) Chemism of some species of Antarctic macroalgae of the genera Adenocystis, Himantothallus, Leptosomia, and Monostroma. Pol Polar Res 2:95–107

    Google Scholar 

  • Davey MC (1989) The Effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol 10:29–36

    Article  Google Scholar 

  • Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8

    Article  Google Scholar 

  • Deacon GER (1937) The hydrology of the Southern Ocean. Discovery Rep 15:125–152

    Google Scholar 

  • DeLaca TE, Lipps JH (1976) Shallow-water marine associations, Antarctic Peninsula. Antarctic J 11:12–20

    Google Scholar 

  • Delépine R, Lamb JM, Zimmermann MH (1966) Preliminary report on the vegetation of the Antarctic Peninsula. Proc 5th Int Seaweed Symp, pp 107–116

    Google Scholar 

  • Demmig-Adams B, Adams III WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Dethier MN (1981) Heteromorphic algal life histories: the seasonal pattern and response to herbivory of the brown crust, Ralfsia californica. Oecologia (Berl.) 49:333–339

    Article  Google Scholar 

  • Dhargalkar V, Reddy C, Deshmukhe G, Unatawale A (1987) Biochemical composition of some benthic marine algae of the Vestfold Hills. Antarctica Indian J Mar Sci 16:269–271

    Google Scholar 

  • tom Dieck I (Bartsch) (1991) Circannual growth rhythm and photoperiodic sorus induction in the kelp Laminaria setchellii (Phaeophyta). J Phycol 27:341–350

    Google Scholar 

  • tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridisation experiments and temperature responses. Phycologia 31:147–163

    Google Scholar 

  • tom Dieck I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264

    Google Scholar 

  • Dieckmann G, Reichardt W, Zielinski K (1985) Growth and production of the seaweed, Himantothallus grandifolius, at King George Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin Heidelberg, pp 104–108

    Google Scholar 

  • Drew EA (1977) The physiology of photosynthesis and respiration in some Antarctic marine algae. Br Antarct Surv Bull 46:59–76

    Google Scholar 

  • Drew EA, Hastings RM (1992) A year-round ecophysiological study of Himantothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island. Antarctica. Phycologia 31:262–277

    Google Scholar 

  • Dring MJ, Makarov V, Schoschina E, Lorenz M, Lüning K (1996) Influence of ultraviolet radiation on chlorophyll fluorescence and growth in different life history stages of three species of Laminaria (Phaeophyta). Mar Biol 126:183–191

    Article  CAS  Google Scholar 

  • Duffy J, Paul V (1992) Prey nutritional quality and effectiveness of chemical defenses against tropical reef fishes. Oecologia 90:333–339

    Article  Google Scholar 

  • Dummermuth AL, Wiencke C (2003) Experimental investigation of seasonal development in six Antarctic red macroalgae. Antarct. Sci. 15:449–457

    Article  Google Scholar 

  • Dunton KH (1985) Growth of dark-exposed Laminaria saccharina (L.) Lamour and Laminaria solidungula J. Ag (Laminariales: Phaeophyta) in the Alaskan Beaufort Sea. J Exp Mar Biol Ecol 94:181–189

    Article  Google Scholar 

  • Dunton KH (1990) Growth and production in Laminaria solidungula: relation to continuous underwater light levels in the Alaskan high Arctic. Mar Biol 106:297–304

    Article  Google Scholar 

  • Dunton KH (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7:183–189

    Article  Google Scholar 

  • Dunton KH (2001) δ15N and δ13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112

    Article  Google Scholar 

  • Dunton, KH, Dayton, PK (1995) The biology of high latitude kelp. In: Skjoldal HR (ed) Ecology of fjords and coastal waters: proceedings of the Mare Nor symposium on the ecology of fjords and coastal waters, Tromso, Norway, 5–9 December 1994. Elsevier, Amsterdam, pp 499–507

    Google Scholar 

  • Dunton KH, Jodwalis CM (1988) Photosynthetic performance of Laminaria solidungula measured in situ in the Alaskan High Arctic. Mar Biol 98:277–285

    Article  Google Scholar 

  • Dunton KH, Schell DM (1986) Seasonal carbon budget and growth of Laminaria solidungula in the Alaskan High Arctic. Mar Ecol Prog Ser 31:57–66

    Google Scholar 

  • Dunton KH, Schell DM (1987) Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: δ13C evidence. Mar Biol 93:615–625

    Article  CAS  Google Scholar 

  • Dunton KH, Schonberg SV (2000) The benthic faunal assemblage of the Boulder Patch kelp community. In: Johnson SR, Truett JC (eds) The natural history of an Arctic oil field. Academic Press, San Diego, pp 372–397

    Google Scholar 

  • Dunton KH, Reimnitz E, Schonberg S (1982) An arctic kelp community in the Alaskan Beaufort Sea. Arctic 35:465–484

    Google Scholar 

  • Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618

    Article  Google Scholar 

  • Fain SR, Murray SN (1982) Effects of light and temperature on net photosynthesis and dark respiration of gametophytes and embryonic sporophytes of Macrocystis pyrifera. J Phycol 18:92–98

    Article  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005a) Within-thallus variation in chemical and physical defences in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. J Exp Mar Biol Ecol 322:1–12

    Article  CAS  Google Scholar 

  • Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005b) Variation in phlorotannin content within two species of brown macroalgae (Desmarestia anceps and D. menziesii) from the Western Antarctic Peninsula. Polar Biol 28:680–686

    Article  Google Scholar 

  • Falkowski PG, Raven J (1997) Aquatic photosynthesis. Blackwell Science

    Google Scholar 

  • Gagne J, Mann K,, Chapman ARO (1982) Seasonal patterns of growth and storage in Laminaria longicruris in relation to differing patterns of availability of nitrogen in the water. Mar Biol 69:91–101

    Article  Google Scholar 

  • Gain L (1912) La flore algologique des régions antarctiques et subantarctiques. In: Charcot J (ed) Deuxième expédition Antarctique française (1908–1910). Sciences naturelles: Documents scientifiques, tome 8. Masson et Companie, Paris, pp 1–218

    Google Scholar 

  • Gerland S, Lind B, Dowdall M, Karcher M, Kolstad AK (2003) 99Tc in seawater in the West Spitsbergen Current and adjacent areas. J Environ Radioactivity 69:119–127

    Article  CAS  Google Scholar 

  • Godley EJ (1965) Botany of the southern zone. Exploration to 1843, Tuatara 13:140–181

    Google Scholar 

  • Gómez I, Lüning K (2001) Constant short-day treatment of outdoor-cultivated Laminaria digitata prevents summer drop in growth rate. Eur J Phycol 36:391–395

    Article  Google Scholar 

  • Gómez I, Westermeier R (1995) Energy contents and organic constituents in Antarctic and south Chilean marine brown algae. Polar Biol 15:597–602

    Google Scholar 

  • Gómez I, Wiencke C (1996a) Photosynthesis, dark respiration and pigment contents of gametophytes and sporophytes of the Antarctic brown alga Desmarestia menziesii. Bot Mar 39: 149–157

    Google Scholar 

  • Gómez, Wiencke C (1996b) Seasonal growth and photosynthetic performance of the Antarctic macroalga Desmarestia menziesii (Phaeophyceae) cultivated under fluctuating Antarctic daylengths, Bot Acta 110:25–31

    Google Scholar 

  • Gómez I, Wiencke C (1997) Seasonal growth and photosynthetic performance of the Antarctic macroalga Desmarestia menziesii (Phaeophyceae) cultivated under fluctuating Antarctic daylengths. Bot Acta 110:25–31

    Google Scholar 

  • Gómez I, Wiencke C (1998) Seasonal changes in C, N, and major organic compounds and their significance to morphofunctional processes in the endemic Antarctic brown alga Ascoseira mirabilis. Polar Biol 19:115–124

    Article  Google Scholar 

  • Gómez I, Thomas DN, Wiencke C (1995a) Longitudinal profiles of growth, photosynthesis and light independent carbon fixation in the Antarctic brown alga Ascoseira mirabilis. Bot Mar 38:157–164

    Google Scholar 

  • Gómez I, Wiencke C, Weykam G (1995b) Seasonal photosynthetic characteristics of the brown alga Ascoseira mirabilis from King George Island (Antarctica). Mar Biol 123:167–172

    Article  Google Scholar 

  • Gómez I, Wiencke C, Thomas DN (1996) Variations in photosynthetic characteristics of the Antarctic marine brown alga Ascoseira mirabilis in relation to thallus age and size. Eur J Phycol 31:167–172

    Article  Google Scholar 

  • Gómez I, Weykam G, Wiencke C (1998) Seasonal photosynthetic metabolism and major organic compounds in the marine brown alga Desmarestia menziesii from King George Island (Antarctica). Aquat Bot 60:105–118

    Article  Google Scholar 

  • Gómez I, Weykam G, Klöser H, Wiencke C (1997) Photosynthetic light requirements, daily carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Progr Ser 148:281–293

    Google Scholar 

  • Graeve M, Dauby P, Scailteur Y (2001) Combined lipid, fatty acid and digestive tract content analyses: a penetrating approach to estimate feeding modes of Antarctic amphipods. Polar Biol 24:853–862

    Article  Google Scholar 

  • Gutkowski R, Maleszewski S (1989) Seasonal changes of the photosynthetic capacity of the Antarctic macroalga Adenocystis utricularis (Bory) Skottsberg. Polar Biol 10:145–148

    Article  Google Scholar 

  • Gutt J (2001) On the direct impact of ice on Marine Benthic communities, a review. Polar Biol 24:553–564

    Article  Google Scholar 

  • Gwynn JP, Dowdall M, Gerland S, SelnæsØG, Wiencke C (2004) Technetium-99 in Arctic marine algae from Kongsfjorden. Svalbard Ber Polarforsch Meeresforsch 492:35–45

    Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar biol 131:361–369

    Article  Google Scholar 

  • Hanelt D, Jaramillo J, Nultsch W, Senger S, Westermeier R (1994) Photoinhibitioin as a regulative mechanism of photosynthesis in marine algae of Antarctica. Ser Cient INACH 44:67–77

    Google Scholar 

  • Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266

    CAS  Google Scholar 

  • Hanelt D, Tüg H, Bischof K, Gross C, Lippert H, Sawall T, Karsten U, Wiencke C (2001) Light regime in an Arctic fjord: a study related to Stratospheric Ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658

    Article  CAS  Google Scholar 

  • Hanelt D, Wiencke C, Bischof K (2003) Photosynthesis in marine Macroalgae. In: Larkum AW, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publisher, Dordrecht, pp 413–435

    Google Scholar 

  • Hatcher BG, Chapman ARO, Mann KH (1977) An annual carbon budget for the kelp Laminaria longicruris. Mar Biol 44:85–96

    Article  CAS  Google Scholar 

  • Healey FP (1972) Photosynthesis and respiration of some Arctic seaweeds. Phycologia 11:267–271

    Google Scholar 

  • Hempel G (1987) Die Polarmeere – ein biologischer Vergleich. Polarforsch 57:173–189

    Google Scholar 

  • Henley WJ, Dunton KH (1995) A seasonal comparison of carbon, nitrogen, and pigment content in Laminaria solidungula and L. saccharina (Phaeophyta) in the Alaskan Arctic. J Phycol 31:325–331

    Article  Google Scholar 

  • Henley WJ, Dunton KH (1997) Effects of nitrogen supply and continuous darkness on growth and photosynthesis of the arctic kelp Laminaria solidungula. Limnol Oceanogr 42:209–216

    Article  CAS  Google Scholar 

  • van den Hoek C (1982a) Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. A review of experimental evidence from life history studies. Helgoländer Meeresunters 35:153–214

    Article  Google Scholar 

  • van den Hoek C (1982b) The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc 18:1–144

    Google Scholar 

  • van den Hoek C, Breeman AM (1989) Seaweed biogeography in the North Atlantic: where are we now? In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marine algae of the North Atlantic. NATO ASI Series, Vol. G 22, Springer-Verlag, Berlin, Heidelberg, pp 57–86

    Google Scholar 

  • Hooper RG (1984) Functional adaptations to the polar environment by the arctic kelp, Laminaria solidungula. Br Phycol J 19:194

    Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Horn M, Neighbors M (1984) Protein and nitrogen assimilation as a factor in predicting the seasonal macroalgal diet of the monkeyface prickleback. Trans Am Fish Soc 113:388–396

    Article  Google Scholar 

  • Hoyer K, Karsten U, Sawall T, Wiencke C (2001) Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and developmental stages. Mar Ecol Prog Ser 211:117–129

    CAS  Google Scholar 

  • Huang YM, McClintock JB, Amsler CD, Peters KJ, Baker BJ (2006) Feeding rates of common Antarctic gammarid amphipods on ecologically important sympatric macroalgae. J Exp Mar Biol Ecol 329:55–65

    Article  Google Scholar 

  • Iken K (1996) Trophic relations between macroalgae and herbivores in Potter Cove (King George Island, Antarctica). Ber Polarforsch Meeresforsch 201:1–206. (in German)

    Google Scholar 

  • Iken K (1999) Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria Antarctica. J Exp Mar Biol Ecol 236:133–148

    Article  Google Scholar 

  • Iken K, Barrera-Oro ER, Quartino ML, Casaux RJ, Brey T (1997) Grazing in the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Ant Sci 9:386–391

    Google Scholar 

  • Iken K, Quartino M, Barrera Oro E, Palermo J, Wiencke C, Brey T (1998) Trophic relations between macroalgae and herbivores. Ber Polarforsch Meeresforsch 299:258–262

    Google Scholar 

  • Iken K, Quartino ML, Wiencke C (1999) Histological identification of macroalgae from stomach contents of the Antarctic fish Notothenia coriiceps gives new insights in its feeding ecology. Mar Ecol 20:11–18

    Article  Google Scholar 

  • Iken KB, Amsler CD, Hubbard JM, McClintock JB, Baker BJ (2001) Preliminary results on secondary metabolites from Antarctic brown algae and their ecological relevance. J Phycol 37:25–26. (Suppl.)

    Google Scholar 

  • Jacob A, Kirst GO, Wiencke C, Lehmann H (1991) Physiological responses of the Antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. J Plant Physiol 139:57–62

    CAS  Google Scholar 

  • Jacob A, Lehmann H, Kirst GO, Wiencke C (1992a) Changes in the ultrastructure of Prasiola crispa ssp. antarctica under salinity stress. Bot Acta 105:41–46

    Google Scholar 

  • Jacob A, Wiencke C, Lehmann H, Kirst GO (1992b) Physiology and ultrastructure of desiccation in the green alga Prasiola crispa from Antarctica. Bot Mar 35:297–303

    Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam

    Google Scholar 

  • Johnston AM, Raven J (1986) Dark carbon fixation studies on the intertidal macroalga Ascophyllum nodosum (Phaeophyta). J Phycol 22:483–485

    Google Scholar 

  • Kain (Jones) JM (1964) Aspects of the biology of Laminaria hyperborea. III. Survival and growth of gametophytes. J Mar Biol Assoc UK 44:415–433

    Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215

    Article  Google Scholar 

  • Karsten U, West JA (2000) Living in the intertidal zone – seasonal effects on heterosides and sun-screen compounds in the red alga Bangia atropurpurea (Bangiales). J Exp Mar Biol Ecol 254:221–234

    Article  PubMed  CAS  Google Scholar 

  • Karsten U, Wiencke C, Kirst GO (1991a) The effect of salinity changes upon physiology of eulittoral green macroalgae from Antarctica and Southern Chile. I. Cell viability, growth, photosynthesis and dark respiration. J Plant Physiol 138:667–673

    Google Scholar 

  • Karsten U, Wiencke C, Kirst GO (1991b) The effect of salinity changes upon physiology of eulittoral green macroalgae from Antarctica and Southern Chile. II. Inorganic ions and organic compounds. J Exp Bot 42:1533–1539

    Article  CAS  Google Scholar 

  • Karsten U, Barrow KD, King RJ (1993) Floridoside, l-isofloridoside and d-isofloridoside in the red alga Porphyra columbina: seasonal and osmotic effects. Plant Physiol 103:485–491

    PubMed  CAS  Google Scholar 

  • Karsten U, Kück K, Vogt C, Kirst GO (1996a) Dimethylsulfoniopropionate production in phototrophic organisms and its physiological function as a cryoprotectant. In: Kiene RP (ed) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum Press, New York, pp 143–153

    Google Scholar 

  • Karsten U, Barrow KD, Nixdorf O, King RJ (1996b) The compatibility of unusual organic osmolytes from mangrove red algae with enzyme activity. Aust J Plant Physiol 23:577–582

    CAS  Google Scholar 

  • Kennicutt II MC, et al (1990) Oil spillage in Antarctica. Environ Sci Technol 24:620–624

    Article  Google Scholar 

  • Kerby WN, Evans LV (1983) Phosphoenolpyruvate carboxykinase activity in Ascophyllum nodosum (Phaeophyceae). J Phycol 19:1–3

    Article  CAS  Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53

    Article  CAS  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199

    Article  Google Scholar 

  • Kjellman FR (1883) The algae of the Arctic Sea. Boktryckeriet, Stockholm

    Google Scholar 

  • Klöser, H (1994) Descripción Basica de la Caleta Potter y Costas Abiertas Adyacentes. Dirección Nacional del Antártico; reporte de datos: Estructura y Dinamica de un Ecosistema Costero Antártico, Estación Cientifica ”Teniente Jubany” en la Isla 25 de Mayo (King George Island), Islas Shetland del Sur. Contributión 419B

    Google Scholar 

  • Klöser H, Ferreyra G, Schloss I, Mercuri G, Laturnus F, Curtosi A (1993) Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King Goerge Island, South Shetlands). J Mar Systems 4:289–301

    Article  Google Scholar 

  • Klöser H, Quartino ML, Wiencke C (1996) Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiologia 333:1–17

    Article  Google Scholar 

  • Knebel G (1936) Monographie der Algenreihe Prasiolales, insbesonder von Prasiola crispa. Hedwigia 75:1–120

    Google Scholar 

  • Knox GA, Lowry JK (1978) A comparison between the benthos of the Southern Ocean and the North Polar Ocean with special reference to the Amphipoda and the Polychaeta. In: Dunbar JM (ed) ‘Polar Oceans’ Proc. SCOR/SCAR polar ocean conference, Montreal 1974, pp 423–462

    Google Scholar 

  • Konar B, Iken K (2005) Competitive dominance among sessile marine organisms in a high Arctic boulder community. Polar Biol 29:61–64

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kremer BP (1981a) Metabolic implications of non-photosynthetic carbon fixation in brown macroalgae. Phycologia 20:242–250

    CAS  Google Scholar 

  • Kremer BP (1981b) Aspects of carbon metabolism in marine macroalgae. Oceanogr Mar Biol Annu Rev 19:41–94

    Google Scholar 

  • Küppers U, Kremer BP (1978) Longitudinal profiles of carbon dioxide capacities in marine macroalgae. Plant Physiol 62:49–53

    PubMed  Google Scholar 

  • Lamb IM, Zimmermann MH (1977) Benthic marine algae of the Antarctic Peninsula, Antarctic research series 23, Biology of the Antarctic Seas V, Paper 4, pp 129–229

    Google Scholar 

  • Latala A (1990) Photosynthesis and respiration of some marine benthic algae from Spitsbergen. Polar Res 8:303–308

    Article  Google Scholar 

  • Laturnus F (1996) Volatile halocarbons released from Arctic macroalgae. Mar Chem 55:359–366

    Article  CAS  Google Scholar 

  • Laturnus F (2001) Marine macroalgae in polar regions as natural sources for volatile organohalogens. Environ Sci Pollut Res 8:103–108

    Article  CAS  Google Scholar 

  • Laturnus F, Wiencke C, Klöser H (1996) Antarctic macroalgae – sources of volatile halogenated organic compounds. Mar Environ Res 41:169–181

    Article  CAS  Google Scholar 

  • Lee RKS (1980) A catalogue of the marine algae of the Canadian Artic. Natl Mus Nat Sci Publ Bot 9:1–83

    Google Scholar 

  • Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae at Kongsfjord (Spitsbergen) – species composition and distribution on abundant macroalgal species. Polar Biol 24:512–522

    Article  Google Scholar 

  • Lubchenco J, Cubit J (1980) Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61:676–687

    Article  Google Scholar 

  • Lüder UH (2003) Acclimation of the photosynthetic apparatus of the endemic Antarctic red macroalga Palmaria decipiens to seasonally changing light conditions. Ber Polarforsch Meeresforsch 469:141 pp

    Google Scholar 

  • Lüder UH, Clayton MN (2004) Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory – the first microscopic study. Planta 218:928–937

    Article  PubMed  CAS  Google Scholar 

  • Lüder UH, Knoetzel J, Wiencke C (2001a) Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic Antarctic red macroalga Palmaria decipiens. Polar Biol 24:598–603

    Article  Google Scholar 

  • Lüder UH, Knoetzel J, Wiencke C (2001b) Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae). Physiol Plant 112:572–581

    Article  Google Scholar 

  • Lüder UH, Knoetzel J, Wiencke C (2002) Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta) – a study to simulate Antarctic winter sea ice cover. J Phycol 38:904–913

    Article  Google Scholar 

  • Lund S (1951) Marine algae from Jörgen Brönlunds fjord in eastern North Greenland. Meddr Grønland 128:1–26

    Google Scholar 

  • Lund S (1959a) The marine algae from East Greenland. I. Taxonomical Part. Meddr Grønland 156(1):1–247

    Google Scholar 

  • Lund S (1959b) The marine algae from East Greenland. II. Geographic distribution. Meddr Grønland 156(2):1–70

    Google Scholar 

  • Lüning K (1971) Seasonal growth of Laminaria hyperborea under recorded underwater light conditions near Helgoland. In: Crisp DJ (ed) Proc 4th European Mar Biol Symp. University Press, Cambridge, pp 347–361

    Google Scholar 

  • Lüning K (1979) Growth strategies of three Laminaria species (Phaeophyceae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). Mar Ecol Prog Ser 1:195–207

    Google Scholar 

  • Lüning K (1980a) Control of algal-life-history by daylength and temperature. In: Price JH, Irvine DEG, Farnham WF (eds) The shore environment, vol 2. Ecosystems. Academic Press, New York, pp 915–945

    Google Scholar 

  • Lüning K (1980b) Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J Phycol 16:1–15

    Article  Google Scholar 

  • Lüning K (1988) Photoperiodic control of sorus formation in the brown alga Laminaria saccharina. Mar Ecol Prog Ser 45:137–144

    Google Scholar 

  • Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. John Wiley, Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 527 pp

    Google Scholar 

  • Lüning K (1991) Circannual growth rhythm in a brown alga, Pterygophora californica. Bot Acta 104:157–162

    Google Scholar 

  • Lüning K, Dring MJ (1979) Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgol Meeresunters 32:403–424

    Article  Google Scholar 

  • Lüning K, Kadel P (1993) Daylength range for circannual rhythmicity in Pterygophora californica (Alariaceae, Phaeophyta) and synchronisation of seasonal growth by daylength cycles in several other brown algae. Phycologia 32:379–387

    Google Scholar 

  • Lüning K, Neushul M (1978) Light and temperature demands for growth and reproduction of Laminarian gametophytes in southern and central California. Mar Biol 45:297–309

    Article  Google Scholar 

  • Lüning K, tom Dieck I (1989) Environmental triggers in algal Seasonality. Bot Mar 32:389–397

    Article  Google Scholar 

  • Lüning K, Schmitz K, Willenbrink J (1973) CO2 fixation and translocation in benthic marine algae. III. Rates and ecological significance of translocation in Laminaria hyperborea and L. saccharina. Mar Biol 23:275–281

    Article  Google Scholar 

  • McClintock JB, Karentz D (1997) Mycosporine-like amino acids in 38 species of subtidal marine organisms from McMurdo Sound. Antarctica. Ant Sci 9:392–398

    Google Scholar 

  • McKamey KA, Amsler CD (2006) Effects of temperature and light on growth of the Antarctic algae Geminocarpus geminatus (Ectocarpales: Phaeophyceae) and Cladophora repens (Cladophorales: Cladophorophyceae) in culture. Phycologia 45:225–232

    Article  Google Scholar 

  • Miller AK, Pearse JS (1991) Ecological studies of seaweeds in McMurdo sound. Antarctica Am Zool 31:35–48

    Google Scholar 

  • Moe RL, Silva PC (1977) Antarctic marine flora: uniquely devoid of kelps. Science 196:1206–1208

    Article  PubMed  CAS  Google Scholar 

  • Moe RL, Silva PC (1981) Morphology and taxonomy of Himantothallus (including Phaeoglossum and Phyllogigas), an Antarctic member of the Desmarestiales (Phaeophyceae). J Phycol 17:15–29

    Article  Google Scholar 

  • Moe RL, Silva PC (1989) Desmarestia antarctica (Desmarestiales, Phaeophyceae), a new ligulate Antarctic species with an endophytic gametophyte. Plant Syst Evol 164:273–283

    Article  Google Scholar 

  • Moe RL, DeLaca TE (1976) Occurrence of macroscopic algae along the Antarctic Peninsula. Antarctic J 11:20–24

    Google Scholar 

  • Moore PG, MacAlister HE, Taylor AC (1995) the environmental tolerances and behavioural ecology of the sub-Antarctic Beach-Hopper “Orchestia” scutigerula Dana (Crustacea: Amphipoda) from Husvik, South Georgia. J Exper Mar Biol Ecol 189:159–182

    Article  Google Scholar 

  • Neushul M (1965) Diving observations of subtidal Antarctic marine vegetation. Bot Mar 8:234–243

    Google Scholar 

  • Neushul M (1972) Functional interpretation of benthic marine algal morphology. In: Abbott IS, Kurogi M (eds) Contributions to the systematic of benthic marine algae of the North Pacific. Japanese Society Phycology, Kobe, pp 47–71

    Google Scholar 

  • Nishiguchi MK, Somero GN (1992) Temperature-and concentration-dependence of compatibility of the organic osmolyte β-dimethylsulfoniopropionate. Cryobiology 29:118–124

    Article  PubMed  CAS  Google Scholar 

  • Novaczek I (1984) Response of gametophytes of Ecklonia radiata (Laminariales) to temperature in saturating light. Mar Biol 82:241–245

    Article  Google Scholar 

  • Novaczek I, Lubbers GW, Breeman AM (1990) Thermal ecotypes in amphi-Atlantic algae. I. Algae of Arctic to cold-temperate distribution (Chaetomorpha melagonium, Devaleraea ramentacea and Phycodrys rubens). Helgoländer Meeresunters 44:459–474

    Article  Google Scholar 

  • Orheim O, Allegrini I, Boissonnas J, Drewry D, Gascard JC, Hedberg D, Müller-Wille L, Prestrud P, Sors A, Tilzer M (1995) European research in the Arctic – looking ahead. Norsk Polarinstitutt, Oslo

    Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer NR (eds) Photoinhibition of photosynthesis, from the molecular mechanisms to the field. BIOS Scientific Publ., Oxford, pp 1–24

    Google Scholar 

  • Papenfuss GF (1964) Catalogue and bibliography of Antarctic and Subantarctic benthic marine algae. Am Geophys Union, Antarctic Res Ser 1:1–76

    Google Scholar 

  • Pedersen PM (1976) Marine, benthic algae from southernmost Greenland. Meddr Grønland 199(3):1–79

    Google Scholar 

  • Peters AF (2003) Molecular identification, taxonomy and distribution of brown algal endophytes, with emphasis on species from Antarctica. In: Chapman ARO, Anderson RJ, Vreeland V, Davison IF (eds) Proceedings of the 17th international seaweed symposium. Oxford University Press, New York, pp 293–302

    Google Scholar 

  • Peters AF, Breeman AM (1992) Temperature responses of disjunct temperate brown algae indicate long-distance dispersal of microthalli across the tropics. J Phycol 28:428–438

    Article  Google Scholar 

  • Peters AF, Breeman AM (1993) Temperature tolerance and latitudinal range of brown algae from temperate Pacific South America. Mar Biol 115:143–150

    Article  Google Scholar 

  • Peters AF, van Oppen MJH, Wiencke C, Stam WT, Olsen JL (1997) Phylogeny and historical ecology of the Desmarestiaceae (Phaeophyceae) support a Southern Hemisphere origin. J Phycol 33:294–309

    Article  CAS  Google Scholar 

  • Peters KJ, Amsler CD, Amsler MO, McClintock JB, Dunbar RB, Baker BJ (2005) A comparative analysis of the nutritional and elemental composition of macroalgae from the western Antarctic Peninsula. Phycologia 44:453–463

    Article  Google Scholar 

  • Polle A (1996) Mehler reaction: friend or foe in photosynthesis. Bot Acta 109:84–89

    CAS  Google Scholar 

  • van de Poll WH, Eggert E, Buma AGJ, Breeman AM (2002) Temperature dependence of UV radiation effects in arctic and temperate isolates of three red macrophytes. Eur J Phycol 37:59–68

    Article  Google Scholar 

  • Quartino ML, Klöser H, Schloss IR, Wiencke C (2001): Biomass and associations of benthic marine macroalgae from the inner Potter Cove (King George Island, Antarctica) related to depth and Substrate. Polar Biol 24:349–355

    Article  Google Scholar 

  • Quartino ML, Zaixso HE, Boraso de Zaixso AL (2005) Biological and environmental characterization of marine macroalgal assemblages in Potter cove, South Shetland Islands, Antarctica. Bot Mar 48:187–197

    Article  Google Scholar 

  • Rakusa-Suszczewski S, Zieliński K (1993) Macrophytobenthos. In: Rakusa-Suszczewski S (ed) The Maritime Antarctic Coastal ecosystem of Admiralty Bay. Polish Academy of Sciences, Warsaw, pp 57–60

    Google Scholar 

  • Ramus J (1978) Seaweed anatomy and photosynthetic performance: the ecological significance of light guides, heterogenous absorption and multiple scatter. J Phycol 14:352–362

    Article  Google Scholar 

  • Ramus J (1981) The capture and transduction of light energy. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. University of California Press, Berkeley, pp 458–492

    Google Scholar 

  • Raven JA, Johnston AM (1991) Photosynthetic inorganic carbon assimilation by Prasiola stipitata (Prasiolales, Chlorophyta) under emersed and submersed conditions: relationship to the taxonomy of Prasiola. Br Phycol J 26:247–257

    Article  Google Scholar 

  • Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174–181

    Article  PubMed  CAS  Google Scholar 

  • Rhoades D (1979) Evolution of plant chemical defenses against herbivores. In: Rosenthal G, Janzed D (eds) Herbivores. Academic Press, New York, pp 4–54

    Google Scholar 

  • Richardson M (1977) The ecology including physiological aspects of selected Antarctic marine invertebrates associated with inshore macrophytes. PhD Dissertation, University of Durham, pp 1–165 (plus references and appendix)

    Google Scholar 

  • Richardson MG (1979) The distribution of the Antarctic marine macro-algae related to depth and substrate. Br Antarctic Bull 49:1–13

    Google Scholar 

  • Roberts RD, Kühl M, Glud RN, Rysgard S (2002) Primary production of crustose coralline red algaein a high Arctic fjord. J Phycol 38:273–283

    Article  Google Scholar 

  • Rosenvinge LK (1898) Deuxième mémoire sur les algues marines du Groenland. Meddr Grønland 20:1–125

    Google Scholar 

  • Salles S, Aguilera J, Figueroa FL (1996) Light field in algal canopies: changes in spectral light ratios and growth of Porphyra leucosticta. Thur. in Le Jol. Sci Mar 60:29–38

    Google Scholar 

  • Schaffelke B, Lüning K (1994) A circannual rhythm controls seasonal growth in the kelp Laminaria hyperborea and L. digitata from Helgoland (North Sea). Eur J Phycol 29:49–56

    Article  Google Scholar 

  • Schmitz K (1981) Translocation. In: Lobban, CS, Wynne M J. (eds) The biology of seaweeds, Botanical monographs, vol 17. University of California Press, Berkeley, Los Angeles, pp 534–558

    Google Scholar 

  • Schmitz K (1990) Algae. In: Behnke H-D, Sjolund RD (eds) Sieve elements. Comparative structure, induction and development. Springer Verlag, Berlin, Heidelberg New York, pp 1–18

    Google Scholar 

  • Schoene T, Pohl M, Zakrajsek AF, Schenke HW (1998) Tide gauge measurements – a contribution for the long term monitoring of the sea level. Ber Polarforsch Meeresforsch 299:12–14

    Google Scholar 

  • Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139

    Article  Google Scholar 

  • Schroeter B, Olech M, Kappen L, Heitland W (1995) Ecophysiological investigations of Usnea antarctica in the Maritime Antarctic. I. Annual microclimatic conditions and potential primary production. Antarct Sci 7:251–260

    Google Scholar 

  • Schwarz A-M, Hawes I, Andrew N, Mercer S, Cummings V, Trush S (2005) Primary production potential of non-geniculate coralline algae at Cape Evans, Ross Sea, Antarctica. Mar Ecol Prog Ser 294:131–140

    CAS  Google Scholar 

  • Scrosati RA (1992) Estudio anatomico de Desmarestia ligulata de Argentina y D. menziesii de Antártida (Phaeophyceae). Physis A 113:89–98

    Google Scholar 

  • Skottsberg CJF (1964) Antarctic phycology. In: Carrick R (ed) Comptes rendues premier symposium biologie Antarctique, Paris 1962. Hermann, Paris, pp 147–154

    Google Scholar 

  • Slocum CJ (1980) Differential susceptibility to grazers in two phases of an intertidal alga: advantages of heteromorphic generations. J Exp Mar Biol Ecol 46:99–110

    Article  Google Scholar 

  • Stockton W (1990) The intertidal zone at Palmer Station, Anvers Island, in the wake of the Bahia Paraiso spill. Antarctic J US 25:203

    Google Scholar 

  • Svendsen P (1959) The algal vegetation of Spitsbergen. A survey of the marine algal flora of the outer part of Isfjorden. Norsk Polarinst Skrifter 116:1–49

    Google Scholar 

  • Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Bischof K, Papucci C, Ørbæk JB, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Article  Google Scholar 

  • Targett NM, Arnold TM (2001) Effects on secondary metabolites on digestion in marine herbivores. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 391–412

    Google Scholar 

  • Taylor WR (1966) Marine algae of the northeastern coast of North America. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice – a habitat for extremophiles. Science 295:641–644

    Article  PubMed  CAS  Google Scholar 

  • Thomas DN, Wiencke C (1991) Photosynthesis, dark respiration and light independent carbon fixation of endemic Antarctic macroalgae. Polar Biol 11:329–337

    Article  Google Scholar 

  • Topcuoglu S., Fowler SW (1984) Factors affecting the biokinetics of Technetium (95mTc) in marine macroalgae. Mar Environ Res 12:25–43

    Article  CAS  Google Scholar 

  • van Oppen MJH, Olsen JL, Stam W, van den Hoek C, Wiencke C (1993) Arctic–Antarctic disjunctions in the benthic seaweeds Acrosiphonia arcta (Chlorophyta) and Desmarestia viridis/willii (Phaeophyta) are of recent origin. Mar Biol 115:381–386

    Article  Google Scholar 

  • van Oppen MJH, Diekmann OE, Wiencke C, Stam WT, Olsen JL (1994) Tracking dispersal routes: phylogeography of Arctic–Antarctic disjunct seaweed Acrosiphonia arcta (Chlorophyta). J Phycol 30:67–80

    Article  Google Scholar 

  • Vinogradova KL (1995) The checklist of the marine algae from Spitsbergen. Bot J 80:50–61

    Google Scholar 

  • Weslawski JM, Wiktor J, Zajaczkowski M, Swerpel S (1993) Intertidal zone of Svalbard. 1. Macroorganism distribution and biomass. Polar Biol 13:73–79

    Article  Google Scholar 

  • Weslawski JM, Zajaczkowski M, Wiktor J, Szymelfenig M (1997) Intertidal zone of Svalbard 3. Littoral of a subarctic, oceanic island: Bjornoya. Polar Biol 18:45–52

    Article  Google Scholar 

  • Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitzbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–33

    Article  Google Scholar 

  • Westermeier B, Gomez I, Rivera PJ, Müller DG (1992) Antarctic marine macroalgae: distribution, abundance and necromass at King George Island, South Shetland. Antarctica. Ser Cient INACH 42:21–34

    Google Scholar 

  • Weykam G, Wiencke C (1996) Seasonal photosynthetic performance of the endemic Antarctic alga Palmaria decipiens (Reinsch) Ricker. Polar Biol 16:357–361

    Google Scholar 

  • Weykam G, Gómez I, Wiencke C, Iken K, Klöser H (1996) Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204:1–22

    Article  Google Scholar 

  • Weykam G, Thomas DN, Wiencke C (1997) Growth and photosynthesis of the Antarctic red algae Palmaria decipiens (Palmariales) and Iridaea cordata (Gigartinales) during and following extended periods of darkness. Phycologia 36:395–405

    Article  Google Scholar 

  • Wiencke C (1988) Notes on the development of some benthic marine macroalgae of King George Island (Antarctica). Ser Cient INACH 37:23–47

    Google Scholar 

  • Wiencke C (1990a) Seasonality of brown macroalgae from Antarctica – a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:589–600

    Article  Google Scholar 

  • Wiencke C (1990b) Seasonality of red and green macroalgae from Antarctica – a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:601–607

    Article  Google Scholar 

  • Wiencke C (2004) The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research performed at the Koldewey Station in the years 1991-2003. Ber Polarforsch.Meeresforsch. 492:1–244

    Google Scholar 

  • Wiencke C, Clayton MN (1990) Sexual reproduction, life history, and early development in culture of the Antarctic brown alga Himantothallus grandifolius (Desmarestiales, Phaeophyceae). Phycologia 29:9–18

    Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic seaweeds. Synopses of the Antarctic Benthos (Wägele JW, Sieg J (eds)), vol 9. Gantner, Ruggell

    Google Scholar 

  • Wiencke C, Fischer G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65:283–292

    Google Scholar 

  • Wiencke C, tom Dieck I (1989) Temperature requirements for growth and temperature tolerance of macroalgae endemic to the Antarctic region. Mar Ecol Progr Ser 54:189–197

    Google Scholar 

  • Wiencke C, tom Dieck I (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and Southern Chile. Mar Ecol Prog Ser 59:157–170

    Google Scholar 

  • Wiencke C, Stolpe U, Lehmann H (1991) Morphogenesis of the brown alga Desmarestia antarctica cultivated under seasonally fluctuating Antarctic daylengths. Ser Cient INACH 41:65–78

    Google Scholar 

  • Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Bot Acta 106:78–87

    Google Scholar 

  • Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259

    Google Scholar 

  • Wiencke C, Clayton MN, Schulz D (1995) Life history, reproductive morphology and development of the Antarctic brown alga Desmarestia menziesii J. Agardh. Bot Acta 108:201–208

    Google Scholar 

  • Wiencke C, Clayton MN, Langreder C (1996) Life history and seasonal morphogenesis of the endemic Antarctic brown alga Desmarestia anceps Montagne. Bot Mar 39:435–444

    Article  Google Scholar 

  • Wiencke C, Vögele B, Kovaltchouk NA, Hop H (2004). Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalbard. Ber Polarforsch Meeresforsch 492:55–62

    Google Scholar 

  • Wilce RT (1963) Studies on benthic marine algae in north-west Greenland. Proc Int Seaweed Symp 4:280–287

    Google Scholar 

  • Wilce RT (1990) Role of the Arctic Ocean as a bridge between the Atlantic and Pacific Oceans: fact and hypothesis. In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marina algae of the North Atlantic. Springer-Verlag Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, pp 323–348

    Google Scholar 

  • Wilce RT (1994) The Arctic subtidal as habitat for macrophytes. In: Lobban CS, Harrison PJ (eds) Seaweed ecology and physiology. Cambridge University Press, Cambridge, pp 89–92

    Google Scholar 

  • Winkler JB, Kappen L, Schulz F (2000) Snow and ice as an important ecological factor fort the cryptogams in the maritime Antarctic. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Sciences, University of Canterbury, pp 220–224

    Google Scholar 

  • Womersley HBS (1991) Biogeography of Australasian marine macroalgae. In: Clayton MN, King RJ (eds) Biology of marine plants. Longman Cheshire, Melbourne, pp 367–381

    Google Scholar 

  • Zaneveld JS (1968) Benthic marine algae, Ross Island to Balleny Islands. Antarctic Map Folio Series. Am Geograph Soc NY, Folio 10:1–12

    Google Scholar 

  • Zielinski K (1981) Benthic macroalgae of Admiralty Bay (King Goerge Island, Antarctica) and circulation of algal matter between the water and the shore. Pol Polar Res 2:71–94.

    Google Scholar 

  • Zinova AD (1953) Brown algae of the northern seas of the U.S.S.R. Izdatel’Akademii Nauk SSSR, Moscow, Leningrad

    Google Scholar 

  • Zinova AD (1955) Red algae of the northern seas of the U.S.S.R. Izdatel’Akademii Nauk SSSR, Moscow, Leningrad

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wiencke .

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. Gunter O. Kirst and to Prof. Dr. Klaus Lüning on occasion of their retirement 28. Februar 2006 and 31. March 2006, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wiencke, C. et al. (2006). Life strategy, ecophysiology and ecology of seaweeds in polar waters. In: Amils, R., Ellis-Evans, C., Hinghofer-Szalkay, H. (eds) Life in Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6285-8_13

Download citation

Publish with us

Policies and ethics