Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii

Review Paper


Molecular studies on halophilic adaptations have focused on prokaryotic microorganisms due to a lack of known appropriate eukaryotic halophilic microorganisms. However, the black yeast Hortaea werneckii has been identified as the dominant fungal species in hypersaline waters on three continents. It represents a new model organism for studying the mechanisms of salt tolerance in eukaryotes. Ultrastructural studies of the H. werneckii cell wall have shown that it synthesizes dihydroxynaphthalene (DHN) melanin under both saline and non-saline growth conditions. However, melanin granules in the cell walls are organized in a salt-dependent way, implying the potential osmoprotectant role of melanin. At the level of membrane structure, H. werneckii maintains a sterol-to-phospholipid ratio significantly lower than the salt-sensitive Saccharomyces cerevisiae. Accordingly, membranes of H. werneckii are more fluid over a wide range of NaCl concentrations, indicating high intrinsic salt stress tolerance. Even H. werneckii grown in high NaCl concentrations maintains very low intracellular amounts of potassium and sodium, demonstrating the sodium-excluder character of this organism. The salt-dependent expressions of two HwENA genes suggest roles for them in the adaptation to changing salt concentrations. The high similarity of these ENA ATPases to other fungal ENA ATPases involved in Na+/K+ transport indicates their potential importance in H. werneckii ion homeostasis. Glycerol is the main compatible solute which accumulates in the cytoplasm of H. werneckii at high salinity, although it seems that mycosporines may also act as supplementary compatible solutes. Salt dependent increase in glycerol synthesis is supported by the identification of two copies of a gene putatively coding for glycerol-3-phosphate-dehydrogenase. Expression of only one of these genes is salt dependent.


Compatible solutes Ecology Halophiles Hortaea werneckii Hypersaline water Ions Melanin Membrane Mycosporines Salterns 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almagro A, Prista C, Quintas C, Madeira Lopes A, Ramos J, Loureiro-Dias MC (2000) Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56:191–197PubMedCrossRefGoogle Scholar
  2. Almagro A, Prista C, Benito B, Loureiro-Dias MC, Ramos J (2001) Cloning and expression of two genes coding for sodium pumps in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 183(10):3251–3255PubMedCrossRefGoogle Scholar
  3. Andre L, Nillsson A, Adler L (1988) The role of glycerol in osmotolerance of the yeast Debaromyces hansenii. J Gen Microbiol 134:669–677Google Scholar
  4. Andreishcheva EN, Isakova EP, Sidorov NN, Abramova NB, Ushakova NA, Shaposhnikov GL, Soares MIM, Zvyagilskaya RA (1999) Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry 64(9):1061–1067 (Moscow)PubMedGoogle Scholar
  5. Andrews S, Pitt JI (1987) Further studies on the water relations of xerophilic fungi, including some halophiles. J Gen Microbiol 133:233–238Google Scholar
  6. Bandaranayake WM (1998) Mycosporines: are they nature’s sunscreens? Nat Prod Rep 15(2):159–172PubMedCrossRefGoogle Scholar
  7. Banuelos MA, Rodriguez-Navarro A (1998) P-type ATPases mediate sodium and potassium effluxes in Schwanniomyces occidentalis. J Biol Chem 273(3):1640–1646PubMedCrossRefGoogle Scholar
  8. Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451CrossRefGoogle Scholar
  9. Benito B, Garciadeblas B, Rodriguez-Navarro A (2002) Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148(Pt 4):933–941PubMedGoogle Scholar
  10. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212PubMedCrossRefGoogle Scholar
  11. Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182(1):1–8PubMedCrossRefGoogle Scholar
  12. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244(2):229–234PubMedCrossRefGoogle Scholar
  13. Elliot ML, Henson JM (2001) Effect of osmotic stress on growth of Gaeumannomyces graminis strains differing in hyphal pigmentation. Mycologia 93(4):617–625CrossRefGoogle Scholar
  14. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328PubMedGoogle Scholar
  15. Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R, Rodriguez-Navarro A (1993) Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236(2–3):363–368PubMedCrossRefGoogle Scholar
  16. Gorbushina AA, Krumbein WE, Hamann CH, Panina LK, Soukharjevski SM, Wollenzien U (1993) Role of black fungi in color change and biodeterioration of antique marbles. Geomicrobiol J 11:205–211Google Scholar
  17. Göttlich E, de Hoog GS, Yoshida S, Takeo K, Nishimura K, Miyaji M (1995) Cell surface hydrophobicity and lipolysis as essential factors in human tinea nigra. Mycoses 38:489–494PubMedGoogle Scholar
  18. Gunde-Cimerman N, Frisvad JC, Zalar P, Plemenitaš A (2005) Halotolerant and halophilic fungi. Oxford & IBH Publishing Co. Pvt. Ltd.Google Scholar
  19. Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240Google Scholar
  20. Holker U, Bend J, Pracht R, Tetsch L, Muller T, Hofer M, de Hoog GS (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Anton Van Leeuwen 86(4):287–294CrossRefGoogle Scholar
  21. de Hoog GS (1993) Evolution of black yeasts: possible adaptation to the human host. Anton Van Leeuwen 63:105–109CrossRefGoogle Scholar
  22. de Hoog G, Hermanides-Nijhof E (1977) Survey of black yeasts and allied fungi. Stud Mycol 15:178–221Google Scholar
  23. de Hoog GS, Gerrits van den Ende AHG (1992) Nutritional pattern and eco-physiology of Hortaea werneckii, agent of human tinea nigra. Anton Van Leeuwen 62:321–329Google Scholar
  24. de Hoog GS, Guého E (1998) Agents of white piedra, black piedra and tinea nigra. In: Asello L, Hay RJ (eds) Topley and Wilsons microbiology and microbial infections, 3rd edn., vol 4. Arnold, London, pp 1–15Google Scholar
  25. de Hoog GS, Zalar P, Urzi C, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:33–40Google Scholar
  26. Hosono K (1992) Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii. J Gen Microbiol 138:91–96Google Scholar
  27. Iwatsu T, Udagawa S (1988) Hortaea werneckii isolated from sea-water. Jpn J Med Mycol 29(2):142–145CrossRefGoogle Scholar
  28. Khaware RK, Koul A, Prasad R (1995) High membrane fluidity is related to NaCl stress in Candida membranefaciens. Biochem Mol Biol Int 35(4):875–880PubMedGoogle Scholar
  29. Kogej T (2006) Physiological adaptations of halophilic black yeast Hortaea werneckii to growth at saline conditions on the levels of cell wall and accumulation of compatible solutes. Doctoral Thesis, Ljubljana, 198 ppGoogle Scholar
  30. Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi – novel complementary osmolytes? Environ Chem 3(2):105–110CrossRefGoogle Scholar
  31. Kogej T, Ramos J, Plemenitaš A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71(11):6600–6605PubMedCrossRefGoogle Scholar
  32. Kogej T, Wheeler MH, Lanišnik Rižner T, Gunde-Cimerman N (2004) Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232(2):203–209PubMedCrossRefGoogle Scholar
  33. Krumbein WE, Gorbushina AA, Sterflinger K, Haroska U, Kunert U, Drewello R, Weißmann R (1996) Biodeterioration of historical window panels of the former Cistercian Monastery church of Haina (Hessen, Germany). DECHEMA Monographs 133:417–424Google Scholar
  34. Leach CM (1965) Ultraviolet-absorbing substances associated with light-induced sporulation in fungi. Can J Bot 43:185–200Google Scholar
  35. Libkind D, Perez P, Sommaruga R, Dieguez Mdel C, Ferraro M, Brizzio S, Zagarese H, van Broock M (2004) Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts. Photochem Photobiol Sci 3(3):281–286PubMedCrossRefGoogle Scholar
  36. Mok WYC, Barreto da Silva MS (1981) Occurrence of Exophiala werneckii on salted freshwater fish Osteoglossum bicirrhosum. J Food Technol 16:505–512CrossRefGoogle Scholar
  37. Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21(3):231–241PubMedCrossRefGoogle Scholar
  38. Nienow JA, Friedman EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic Microbiology (Wiley Series in Ecological and Applied Microbiology), pp 342–412. Wiley-Liss, 644 ppGoogle Scholar
  39. Oren A (1997) Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol J 14:231–240CrossRefGoogle Scholar
  40. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63(2):334–348PubMedGoogle Scholar
  41. Petrovič U, Gunde-Cimerman N, Plemenitaš A (1999) Salt stress affects sterol biosynthesis in the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 180(2):325–330PubMedCrossRefGoogle Scholar
  42. Petrovič U, Gunde-Cimerman N, Plemenitaš A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45(3):665–672PubMedCrossRefGoogle Scholar
  43. Pfyffer GE, Pfyffer BU, Rast DM (1986) The polyol pattern, chemotaxonomy, and phylogeny of the fungi. Sydowia 39:160–201Google Scholar
  44. Plemenitaš A, Gunde-Cimerman N (2005) Cellular reponses in the halophilic black yeast Hortaea weneckii to high environmental salinity. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archea, Bacteria and Eukarya. Springer, Dordrecht, The Netherlands, pp 455–470Google Scholar
  45. Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701PubMedCrossRefGoogle Scholar
  46. Ramos J (1999) Contrasting salt tolerance mechanisms in Saccharomyces cerevisiae and Debaryomyces hansenii. In: Pandalai SG (ed) Recent research developments in microbiology, vol 3. Research Signpost, Trivandrum, India, pp 377–390Google Scholar
  47. Ramos J (2005) Introducing Debaryomyces hansenii, a salt-loving yeast. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archea, Bacteria and Eukarya. Springer, Dordrecht, The Netherlands, pp 441–451CrossRefGoogle Scholar
  48. Russell NJ (1989a) Adaptive modifications in membranes of halotolerant and halophilic microorganisms. J Bioenerg Biomembr 21(1):93–113CrossRefGoogle Scholar
  49. Russell NJ (1989b) Structural and functional role of lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic Press, New York, pp 279–349Google Scholar
  50. Russell NJ, Evans, RI, ter Steeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28(2):255–261PubMedCrossRefGoogle Scholar
  51. Sharma SC, Raj D, Forouzandeh M, Bansal MP (1996) Salt-induced changes in lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Appl Biochem Biotechnol 56(2):189–195PubMedGoogle Scholar
  52. Silva-Graça M, Lucas C (2003) Physiological studies on long-term adaptation to salt stress in the extremely halotolerant yeast Candida versatilis CBS 4019 (syn C. halophila). FEMS Yeast Res 3(3):247–260PubMedCrossRefGoogle Scholar
  53. Slaninova I, Sestak S, Svoboda A, Farkas V (2000) Cell wall and cytoskeleton reorganization as the response to hyperosmotic shock in Saccharomyces cerevisiae. Arch Microbiol 173(4):245–252PubMedCrossRefGoogle Scholar
  54. Staley JT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095CrossRefPubMedGoogle Scholar
  55. Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22Google Scholar
  56. Todaro F, Berdar A, Cavaliere A, Criseo G, Pernice L (1983) Gasophtalmus in black sea bream (Spodyliosoma cantharus) caused by Sarcynomyces crustaceus Lindner. Mycopathologia 81:95–97PubMedCrossRefGoogle Scholar
  57. Trione EJ, Leach CM, Mutch JT (1966) Sporogenic substances isolated from fungi. Nature 212:163–164PubMedCrossRefGoogle Scholar
  58. Tunblad-Johansson I, Adler L (1987) Effect of sodium chloride concentration on phospholipid fatty acid composition of yeasts differing in osmotolerance. FEMS Microbiol Lett 43:275–278CrossRefGoogle Scholar
  59. Turk M, Plemenitaš A (2002) The HOG pathway in the halophilic black yeast Hortaea werneckii: isolation of the HOG1 homolog gene and activation of HwHog1p. FEMS Microbiol Lett 216(2):193–199PubMedCrossRefGoogle Scholar
  60. Turk M, Mejanelle L, Sentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitaš A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8(1):53–61PubMedCrossRefGoogle Scholar
  61. Watanabe Y, Iwaki T, Shimono Y, Ichimiya A, Nagaoka Y, Tamai Y (1999) Characterization of the Na+-ATPase gene (ZENA1) from the salt-tolerant yeast Zygosaccharomyces rouxii. J Biosci Bioeng 88(2):136–142PubMedCrossRefGoogle Scholar
  62. Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Tot Env 167:287–294CrossRefGoogle Scholar
  63. Yoshikawa S, Mitsui N, Chikara KI, Hashimoto H, Shimosaka M, Okazaki M (1995) Effect of salt stress on plasma membrane permeability and lipid saturation in the salt-tolerant yeast Zygosaccharomyces rouxii. J Ferment Bioener 80(2):131–135CrossRefGoogle Scholar
  64. Zalar P, de Hoog GS, Gunde-Cimerman N (1999) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48Google Scholar
  65. Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005) Halophilic black yeast colonize wood immersed in hypersaline water. Bot Mar 48:323–326CrossRefGoogle Scholar
  66. Zhdanova NN, Pokhodenko VD (1973) The possible participation of a melanin pigment in the protection of the fungus cell from desiccation. Microbiology 42:753–757Google Scholar
  67. Zhdanova NN, Borisyuk LG, Artzatbanov VY (1990) Ocurrence of the K-type of life strategy in some melanin-containing fungi under experimental conditions. Folia Microbiol 35:423–430Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Faculty of Medicine, Institute of BiochemistryUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations