Skip to main content

Interpolation for Super Resolution Imaging

  • Conference paper

Abstract

High Resolution (HR) means pixel density within image is high. Along with pleasing picture, the high resolution image offers additional information that may be vital in analyzing image precisely in applications like, military, medical imaging, consumer electronics and so forth. Super resolution image reconstruction is used to restore a high resolution image from several low resolution images. Super resolution image reconstruction is three stage process: Registration, Interpolation and Restoration. In this paper we suggest a wavelet based interpolation that decomposes image into correlation based subspaces and then interpolate each one of them independently. Finally combine these subspaces back to get the high resolution image. We propose it for super resolution imaging along with results to put forth that it produces best results qualitatively analyzed using subjective quality measure. The concepts related to super resolution imaging; interpolation and wavelet are covered as background theory.

Keywords

  • Image Interpolation
  • Super-Resolution and Wavelet.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. Hou and Andrews “Cubic spiles for image interpolation and digital filtering,”, IEEE trans. On accost, speech and signal processing, vol 6, no 6, pp 508-517, 1978.

    Google Scholar 

  2. R G Keys, “ Cubic convolutions interpolation for digital image processing”, ISSS Tran. On accost, speech and signal processing, vol 6, no 6, pp 1153-1160, 1981.

    Google Scholar 

  3. Richard Schutz and pp Stevenson, “Bayesain approach to image expansion for improved definition”, IEEE Trans. On Image Processing, pp-234-241, May 1994.

    Google Scholar 

  4. T.M. Lehmann, C. Gonner, K. Spitzer, Survey: Interpolation Methods in Medical Image Processing, IEEE Transactions on Medical Imaging, Vol.18, No.11, November 1999;

    Google Scholar 

  5. E. Maeland, On the comparison of interpolation methods, IEEE Transactions on Medical Imaging, Vol.MI-7, pp.213-217, 1988;

    CrossRef  Google Scholar 

  6. D.M. Monro, P.D. Wakefield, Zooming with Implicit Fractals, Proceedings of International Conference on Image Processing ICIP97, Vol.1, pp.913-916 1997;

    Google Scholar 

  7. W.T. Freeman and E.C. Pasztor and O.T. Carmichael. Learning low level vision. International Journal of Computer Vision, 40(1):25–47,2000.

    CrossRef  MATH  Google Scholar 

  8. W.T. Freeman, T.R. Jones, and E.C. Pasztor. Example based super resolution. IEEE Computer Graphics and Applications, 22(2):56–65, 2002.

    CrossRef  Google Scholar 

  9. Gunturk, Batur, Altunbasak, Hayes and Mersereau, Eigenface based super resolution for face recognition, IEEE, II-845- II848, IEEE ICIP 2002.

    Google Scholar 

  10. Anil K Jain, Fundamentals of Digital Image Processing, Prentice Hall

    Google Scholar 

  11. http://www.aicr.org.uk/links.stm

    Google Scholar 

  12. http://www.breastcancer.org

    Google Scholar 

  13. K. Jensen and D. Anastassiou, “Subpixel edge localization and the interpolation of still images.”. IEEE Trans. Image processing, Vol.4,no.3, Mar 1995, pages 285-295

    CrossRef  Google Scholar 

  14. K.P. Hong, J.K. Paik, H.j. Kim and C H lee, “ An edge preserving image interpolation system for a digital camcorder”, IEEE Tran.Consumer Electronics, Vol 42, no 3, Aug 1996, Pages 279-284.

    CrossRef  Google Scholar 

  15. A M Darwish, MS Bedair, and S I Saheen, “ Adaptive resampling algorithm for image zooming.”, IEE Proc-Vis. Image Signal Processs, vol, 144, No 4, aug 1997, pages 207-212.

    CrossRef  Google Scholar 

  16. M. Antonini, M Barlaud, P Mathieu, and I daubechies, “Image coding using wavelet transform”, IEEE Trans. Image processing, Vol.1, no.2, Apr 1992, pages 205-220.

    CrossRef  Google Scholar 

  17. T. Chang and C J kao, “Texture analysis and classfication with tree structured wavelet transform”, Trans. Image processing, Vol.2,no.4, Oct 1993, pages 429-441.

    CrossRef  Google Scholar 

  18. Averbuch, D Lazar, and m Israeli, “ Image Compression using wavelet transform and multi resolution decompositions”, Trans. Image processing, Vol.5,no.1, Jan 1996, pages 4-15.

    CrossRef  Google Scholar 

  19. V. R. Algazi, G. E. Ford, and R. Potharlanka, “Directional interpolation of images based on visual properties and rank order filtering,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Vol. 4, 1991, pp.3005–3008.

    Google Scholar 

  20. S. W. Lee and J. K. Paik, “Image interpolation using adaptive fast B-spline filtering,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Vol. 5, 1993, pp. 177–180.

    CrossRef  Google Scholar 

  21. J. E. Adams Jr, “Interactions between color plane interpolation and other image processing functions in electronic photography,” Proc. SPIE, Vol. 2416, pp. 144–151, 1995.

    CrossRef  Google Scholar 

  22. S. Carrato, G. Ramponi, and S. Marsi, “A simple edgesensitive image interpolation filter,” in Proc. IEEE Int. Conf. Image Processing, Vol. 3, 1996, pp. 711–714.

    CrossRef  Google Scholar 

  23. B. Ayazifar and J. S. Lim, “Pel-adaptive model-based interpolation of spatially subsampled images,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Vol. 3, 1992, pp. 181–184.

    Google Scholar 

  24. B. S. Morse and D. Schwartzwald, “Isophote-based interpolation,” in Proc. IEEE Int. Conf. Image Processing, Vol. 3, 1998, pp. 227–231.

    Google Scholar 

  25. K. Ratakonda and N. Ahuja, “POCS based adaptive image magnification,” in Proc. IEEE Int. Conf. Image Processing, Vol. 3, 1998, pp.203–207.

    Google Scholar 

  26. D. Calle and A. Montanvert, “Superresolution inducing of an image,” in Proc. IEEE Int. Conf. Image Processing, Vol. 3, 1998, pp. 232–235.

    Google Scholar 

  27. A. J. Patti, M. I. Sezan, and A. M. Tekalp, slash High resolution image reconstruction from a low-resolution image sequence in the presence of time-varying motion blur". Proc. of the IEEE International Conference on Image Processing, Vol. I, 1994.

    Google Scholar 

  28. Eric Kaltenbacher, Russell C. Hardie, High resolution image reconstruction using multiple, low resolution, aliased frames". SPIE, Vol. 2751, 1996.

    Google Scholar 

  29. Mohammad S. Alam, John G. Bognar, Russell C. Hardie, Brian J. Yasuda, High resolution image reconstruction using multiple, randomly shifted, low resolution, aliased frames". SPIE, Vol. 3063, 1997.

    Google Scholar 

  30. Hassan Foroosh, Josaine B. Zerubia, Extension of phase correlation to subpixel registration". IEEE Trans. on Image Processing, Vol. 11, no. 3, March 2002. 83

    Google Scholar 

  31. Hassan Foroosh, Scott Hoge, Motion information in the phase domain". in Video registration (editors M. Shah and R. Kumar), Vol. 5 of Kluwer Intl Series in Video Computing, ch. 3, Kluwer Academic Publishers, May 2003.

    Google Scholar 

  32. Dirk Robinson, Peyman Milanfar, Fundamental performance limits in image registration". IEEE Trans. on Image Processing, Vol. 13, no. 9, Sep. 2004.

    Google Scholar 

  33. Nhat Nguyen, Peyman Milanfar, and Gene Golub, A computationally e± cient superresolution image reconstruction algorithm".

    Google Scholar 

  34. Michael K. Ng and Nirman K. Bose, Mathematical analysis of super-resolution methodology". IEEE Signal Processing Magazine, May 2003.

    Google Scholar 

  35. Zhouchen Lin, Heung-Yeung Shum, Fundamental limits of superresolution algo- rithms under local translation". IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 26, no. 1, Jan. 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Patil, V.H., Bormane, D.S. (2007). Interpolation for Super Resolution Imaging. In: Sobh, T. (eds) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6268-1_85

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6268-1_85

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6267-4

  • Online ISBN: 978-1-4020-6268-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics