Skip to main content

Survey on News Mining Tasks

  • Conference paper
  • 1425 Accesses

Abstract

Nowadays, there are plenty of online websites related to news. Hence, new technologies, tools and special search engines are created for having access to the news on these websites. Online news is a special type of public information which has exclusive characteristics. These characteristics contribute news engines tasks such as discovering, collecting and searching to be different with similar tasks in traditional web search engines. Clustering plays conspicuous role in news engines tasks. In this paper we study various tasks in news engines and also focusing on clustering applications in them.

Keywords

  • News Article
  • Cluster Label
  • News Source
  • News Engine
  • News Page

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. M. D. Corso, A. Gulli, F. Romani, “Ranking a stream of news”, In: WWW ’05: Proceedings of the 14th international conference on World Wide Web, New York, NY, USA, ACM Press (2005) 97–106

    CrossRef  Google Scholar 

  2. M. Atallah, R. Gwadera, W. Szpankowski, ”Detection of significant sets of episodes in event sequences”. icdm 00 (2004) 3–10

    Google Scholar 

  3. N. Maria, M. J. Silva, ”Theme-based retrieval of Web news”, Lecture Notes in Computer Science 1997

    Google Scholar 

  4. D. R. Radev, S. Blair-Goldensohn, Z. Zhang, R. S. Raghavan, ”Interactive, domain-independent identification and summarization of topically related news articles”.

    Google Scholar 

  5. C. Silverstein, M. Henzinger, H. Marais, and M. Moricz, ”Analysis of A Very Large Web Search Engine Query Log“, SIGIR Forum, 33(1), 1999.

    Google Scholar 

  6. M. Naughton, N. Kushmerick, J. Carthy, ”Clustering sentences for discovering events in news articles”, In: ECIR. (2006) 535–538

    Google Scholar 

  7. V. Hatzivassiloglou, J. Klavans, M. Holcombe, R. Barzilay, M. Kan, K. McKeown, “Simfinder: A flexible clustering tool for summarization”, (2001)

    Google Scholar 

  8. H. Toda, R. Kataoka, “A search result clustering method using informatively named entities”, In: WIDM ’05: Proceedings of the 7th annual ACM international workshop on Web information and data management, New York, NY, USA, ACM Press (2005) 81–86

    Google Scholar 

  9. N. A. Shah, E. M. ElBahesh, “Topic-based clustering of news articles”, In: ACM-SE 42: Proceedings of the 42nd annual Southeast regional conference, New York, NY, USA, ACM Press (2004) 412–413

    Google Scholar 

  10. S. Dharanipragada, M. Franz, J. McCarley, S. Roukos, T. Ward, ”Story segmentation and topic detection in the broadcast news domain”, (1999)

    Google Scholar 

  11. M. Henzinger, B. Chang, B. Milch, S. Brin, “Queryfree news search”, (2003)

    Google Scholar 

  12. D. Reis, P. Golgher, A. Silva, A. Laender, “Automatic web news extraction using tree edit distance“, (2004)

    Google Scholar 

  13. Li, Z., Wang, B., Li, M., Ma, W.Y., “A probabilistic model for retrospective news event detection”, In: SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, New York, NY, USA, ACM Press (2005) 106–113

    Google Scholar 

  14. Z. Jiang, A. Joshi, R. Krishnapuram, and L. Yi., ”Retriever: Improving Web Search Engine Results Using Clustering“, In Managing Business with Electronic Commerce 02.

    Google Scholar 

  15. O. Zamir and O. Etzioni, ”Grouper: A Dynamic Clustering Interface to Web Search Results“. In Proceedings of the Eighth International World Wide Web Conference, Toronto, Canada, May 1999.

    Google Scholar 

  16. M. A. Hearst and J. O. Pedersen, ”Reexamining the Cluster Hypothesis: Scatter/Gather on Retrieval Results“, in Proceedings of the 19th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR96), 1996, pp 76-84.

    Google Scholar 

  17. H. Chen and S. Dumais, ”Bringing Order to The Web: Automatically Categorizing Search Results“, in Proceedings of the CHI 2000 Conference on Human Factors in Computing Systems, pp. 142–152, 2000.

    Google Scholar 

  18. Y. Wang and M. Kitsuregawa, ”Link Based Clustering of Web Search Results“, in Second International Conference on Advances in Web-Age Information Management (WAIM), 2000.

    Google Scholar 

  19. H. Zeng, Q. He, Z. Chen, W. Ma, and J. Ma, ”Learning to Cluster Web Search Results“. In Proceedings of ACM SIGIR ’04, 2004.[19] Douglas Cutting, Jan O. Pedersen, David Karger, and John W. Tukey. ”Scatter /Gather: A Cluster-Based Approach to Browsing Large Document Collections“. In Proceedings of SIGIR’92, pages 318-329, Copenhagen, Denmark, June 21-24 1992.

    Google Scholar 

  20. W. Rivadeneira, and B. B. Bederson,A Study of Search Result Clustering Interfaces: Comparing. Textual and Zoomable User Interfaces“. University of Maryland HCIL Technical Report, HCIL-2003-36

    Google Scholar 

  21. V. Rijsbergen, C. J., ”Information Retrieval“. London: Butterworths; 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Sayyadi, H., Salehi, S., AbolHassani, H. (2007). Survey on News Mining Tasks. In: Sobh, T. (eds) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6268-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6268-1_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6267-4

  • Online ISBN: 978-1-4020-6268-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics