Abstract
Nowadays, there are plenty of online websites related to news. Hence, new technologies, tools and special search engines are created for having access to the news on these websites. Online news is a special type of public information which has exclusive characteristics. These characteristics contribute news engines tasks such as discovering, collecting and searching to be different with similar tasks in traditional web search engines. Clustering plays conspicuous role in news engines tasks. In this paper we study various tasks in news engines and also focusing on clustering applications in them.
Keywords
- News Article
- Cluster Label
- News Source
- News Engine
- News Page
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
G. M. D. Corso, A. Gulli, F. Romani, “Ranking a stream of news”, In: WWW ’05: Proceedings of the 14th international conference on World Wide Web, New York, NY, USA, ACM Press (2005) 97–106
M. Atallah, R. Gwadera, W. Szpankowski, ”Detection of significant sets of episodes in event sequences”. icdm 00 (2004) 3–10
N. Maria, M. J. Silva, ”Theme-based retrieval of Web news”, Lecture Notes in Computer Science 1997
D. R. Radev, S. Blair-Goldensohn, Z. Zhang, R. S. Raghavan, ”Interactive, domain-independent identification and summarization of topically related news articles”.
C. Silverstein, M. Henzinger, H. Marais, and M. Moricz, ”Analysis of A Very Large Web Search Engine Query Log“, SIGIR Forum, 33(1), 1999.
M. Naughton, N. Kushmerick, J. Carthy, ”Clustering sentences for discovering events in news articles”, In: ECIR. (2006) 535–538
V. Hatzivassiloglou, J. Klavans, M. Holcombe, R. Barzilay, M. Kan, K. McKeown, “Simfinder: A flexible clustering tool for summarization”, (2001)
H. Toda, R. Kataoka, “A search result clustering method using informatively named entities”, In: WIDM ’05: Proceedings of the 7th annual ACM international workshop on Web information and data management, New York, NY, USA, ACM Press (2005) 81–86
N. A. Shah, E. M. ElBahesh, “Topic-based clustering of news articles”, In: ACM-SE 42: Proceedings of the 42nd annual Southeast regional conference, New York, NY, USA, ACM Press (2004) 412–413
S. Dharanipragada, M. Franz, J. McCarley, S. Roukos, T. Ward, ”Story segmentation and topic detection in the broadcast news domain”, (1999)
M. Henzinger, B. Chang, B. Milch, S. Brin, “Queryfree news search”, (2003)
D. Reis, P. Golgher, A. Silva, A. Laender, “Automatic web news extraction using tree edit distance“, (2004)
Li, Z., Wang, B., Li, M., Ma, W.Y., “A probabilistic model for retrospective news event detection”, In: SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, New York, NY, USA, ACM Press (2005) 106–113
Z. Jiang, A. Joshi, R. Krishnapuram, and L. Yi., ”Retriever: Improving Web Search Engine Results Using Clustering“, In Managing Business with Electronic Commerce 02.
O. Zamir and O. Etzioni, ”Grouper: A Dynamic Clustering Interface to Web Search Results“. In Proceedings of the Eighth International World Wide Web Conference, Toronto, Canada, May 1999.
M. A. Hearst and J. O. Pedersen, ”Reexamining the Cluster Hypothesis: Scatter/Gather on Retrieval Results“, in Proceedings of the 19th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR96), 1996, pp 76-84.
H. Chen and S. Dumais, ”Bringing Order to The Web: Automatically Categorizing Search Results“, in Proceedings of the CHI 2000 Conference on Human Factors in Computing Systems, pp. 142–152, 2000.
Y. Wang and M. Kitsuregawa, ”Link Based Clustering of Web Search Results“, in Second International Conference on Advances in Web-Age Information Management (WAIM), 2000.
H. Zeng, Q. He, Z. Chen, W. Ma, and J. Ma, ”Learning to Cluster Web Search Results“. In Proceedings of ACM SIGIR ’04, 2004.[19] Douglas Cutting, Jan O. Pedersen, David Karger, and John W. Tukey. ”Scatter /Gather: A Cluster-Based Approach to Browsing Large Document Collections“. In Proceedings of SIGIR’92, pages 318-329, Copenhagen, Denmark, June 21-24 1992.
W. Rivadeneira, and B. B. Bederson,”A Study of Search Result Clustering Interfaces: Comparing. Textual and Zoomable User Interfaces“. University of Maryland HCIL Technical Report, HCIL-2003-36
V. Rijsbergen, C. J., ”Information Retrieval“. London: Butterworths; 1979.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this paper
Cite this paper
Sayyadi, H., Salehi, S., AbolHassani, H. (2007). Survey on News Mining Tasks. In: Sobh, T. (eds) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6268-1_40
Download citation
DOI: https://doi.org/10.1007/978-1-4020-6268-1_40
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-6267-4
Online ISBN: 978-1-4020-6268-1
eBook Packages: EngineeringEngineering (R0)
