Abstract
Index structures are frequently used to reduce search times in large databases. With index structures like the B-Tree search time grows only logarithmic with the size of a database for several types of searches. This means that the search time is almost constant for very large database systems even if their size grows significantly. Conventional index structures however do not well support searches specifying lower and/or upper bounds for more than one attribute (multidimensional range searches). Therefore R-Trees are increasingly used in this application context. A typical application domain of R-Trees are spatial database systems with two dimensional search conditions specifying upper and lower bounds for longitude and latitude values. Unfortunately R-Tree efficiency does not meet the expectations in many cases. Theoretical analysis of this problem showed, that search time grows much faster than logarithmic for two and more dimensional range searches in contrary to the one dimensional case. In this paper we prove that a logarithmic search complexity can be achieved for two dimensions, if the form of nodes is optimized relative to the form of search conditions. Based on this result, the paper investigates the form of nodes generated by different existing tree packing methods. Since existing methods fail to ensure the required form, a new tree packing method is proposed which improves the chance to meet the identified requirements.
Keywords
- Geographical Information System
- Leaf Node
- Child Node
- Index Structure
- Search Time
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Lars Arge, Mark de Berg, Herman J. Haverkort, Ke Yi: The Priority R-tree: “A Practically Efficient and Worst-Case Optimal R-tree”, Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, p. 347 - 358, Paris, France,2004
C. Ang, T. Tan: "New linear node splitting algorithm for R-Trees" In M. Scholl and A. Voisard (Eds.), Advances in Spatial Databases, LNCS, Springer-Verlag 1997
A. Bär: “Implementierung, Optimierung und Vergleich ausgewählter Tree-Packing-Verfahren für den R-Baum im Rahmen einer räumlichen Datenbank”, Diplomarbeit, Fachhochschule Hof, 2005
J. L. Bentley: "Multidimensional Binary Search Trees Used for Associative Searching" Communication of the ACM, 18(9), September 1975
J. L. Bentley: "Multidimensional divide and conquer" Communication of the ACM, 23(6), pages 214 - 229, 1980
J. L. Bentley, H. A. Maurer: "Efficient worst-case data structure for range searching" Acta Informatica, 1980
S. Berchtold, D. A. Keim, H. P. Kriegel: "The X-Tree: An Index Structure for High-Dimensional Data", Proc. International Conference on Very Large Data Bases, pages 28 – 39, Mumbai (Bombay), India, 1996
N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger: "The R*-tree: An Efficient and Robust Access Method for Points and Rectangles", Proc. ACM-SIGMOD International Conference on Management of Data, pages 322 - 331,,Atlantic City (NY), May 1990
R. Bayer, C. McCreight: "Organization and Maintenance of Large Ordered Indexes", Acta Informatica 1(3), pages 173 - 189, 1972
S. Brakatsoulas, D. Pfoser, Yannis Theodoridis: "Revisiting R-Tree Construction Principles", ABDIS 2002, Springer LNCS 2435, Bratislava, Slovakia, 2002
R. Göbel, A. Almer, T. Blaschke, G. Lemoine, A. Wimmer: “Towards an Integrated Concept for Geographical Information Systems in Disaster Management”, Proceedings First International Symposium on Disaster Management, Delft, Springer 2005
V. Gaede, O.Günther: "Multidimensional Access Methods", Interner Bericht (www.wiwi.fu-berlin.de), Humboldt Universität, Berlin, 1997
Y. J. Garcia, M. A. Lòpez, S. T. Leutenegger: “A greedy algorithm for bulk loading R-Trees”, Proc. 6th ACM Symposium on Advances in GIS, pages 163 – 164, 1998
R.Göbel: ,,Effiziente Verwaltung geographischer Daten mit räumlichen Datenbanksystemen – Möglichkeiten und Grenzen“, Tagungsband AGIT 2005, Salzburg, Wichmann Verlag, 2005
A. Guttman: "R-Trees: A Dynamic Index Structure for Spatial Searching", Proc. ACM SIGMOD Conference, Boston, pages 47 - 57, 1984
J. M. Hellerstein, E. Koutsoupias, C. H. Papadimitriou: "On the Analysis of Indexing Schemes. ", Proc. ACM Symposium on Principles of Database Systems, Tucson (Arizona), May 1997
I. Kamel, C. Faloutsos: "On Packing R-Trees" Proc. 2nd International Conference on Information and Knowledge Management (CKIM-93), pages 490 - 499, Arlington, 1993
K.V.R. Kanth, A.K. Singh: "Optimal Dynamic Range Searching in Non-replicating Index Structures", Proc. International Conference on Database Theory, LNCS 1540, pages 257-276, 1999
S. T. Leutenegger, J. Edgington, M. A. Lopez: "STR: A Simple and Efficient Algorithm for R-Tree Packing", Proc. 12 th International Conference on Data Engineering, pages 497 - 506, 1997
K. Mehlhorn: "Data Structures and Algorithms 3: Multidimensional Searching and Computational Geometry", Springer Verlag 1984
S. Neupert: “Entwurf und Realisierung einer räunlichen Datenbank auf der Basis optimierter R-Bäume”, Diplomarbeit, Fachhochschule Hof, 2005
K.V. Ravi Kanth, A. Singh: "Optimal Dynamic Range Searching in Non-Replicating Index Structures" Proc. International Conference on Database Theory, pages 257 - 276, Springer Verlag Berlin Heidelberg, 1999
N. Roussopoulos, D. Leifker: "Direct Spatial Search on Pictorial Databases Using Packed R-Trees", Proc. ACM SIGMOD, 1985
T. Sellis, N. Roussopoulos, C. Faloutsos: "The R+-Tree: A Dynamic Index for Multi-Dimensional Objects", Proc. International Conference on Very Large Data Bases, pages 507 – 518, Brighton, September 1987
Y. Theodoridis, T. Sellis: "A Model for the Prediction of R-Tree Performance", Proceedings of the 5th ACM Symposium on Principles of Database Systems, pages 161-171, 1996
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this paper
Cite this paper
Göbel, R. (2007). Towards Logarithmic Search Time Complexity for R-Trees. In: Sobh, T. (eds) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6268-1_37
Download citation
DOI: https://doi.org/10.1007/978-1-4020-6268-1_37
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-6267-4
Online ISBN: 978-1-4020-6268-1
eBook Packages: EngineeringEngineering (R0)
