Abstract
A method to obtain the approximate solution to the diffusion-reaction problem with nonlinear kinetics in transient systems is presented. The analytical solution to the equation that governs the process is based on the linearization of the kinetics expression through the Taylor series expansion above the surface particle concentration of the key component, which includes a critical radius to avoid negative concentration values. The present results for the average concentration were compared with the numerical solution of the exact problem and the error was less than ten percent for the power-law and Monod kinetics equation.
Keywords
- Approximate method
- Diffusion-reaction problem
- Linearization
- Critical radius
- Dead zone
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
J. O. Marroquín de la Rosa, J. A. Ochoa Tapia, T. Viveros García, “Método de estimaciòn aproximado del factor de efectividad isotérmico aplicable a cualquier cinética”, Avances en Ingeniería Química, 8 (1), 37-43, (1998).
M. Goto and T. Hirose , “Approximate rate equation for intraparticle diffusion with or without reaction”, Chemical Engineering Science, 48(10), 1912-1915, 1993.
M. K. Szukiewics, “New approximate model for diffusion and reaction in a porous catalyst”, AIChE Journal, Vol. 46 (3), 661-665, 2000.
M. K. Szukiewics, “Approximate model for diffusion and reaction in a porous pellet and an effectiveness factor”, Chemical Enginnering Science, 59, 479-483, 2004.
H. W. Haynes, “An explicit approximation for the effectiveness factor in porous heterogeneous catalysis”, Chemical Enginnering Science, 41, 412-415, 1986.
J. O. Marroquín de la Rosa, J. A. Ochoa Tapia, T. Viveros García, “A linear approximation method to evaluate isothermal effectiveness factors”, Chemical Engineering Community, Vol. 174, pp. 53-60, 1999.
M. K. Szukiewicz, “An approximate model for diffusion and reaction in a porous pellet”, Chemical Engineering Science 57, 1451-1457, 2002.
J. O. Marroquín de la Rosa, J. A. Ochoa Tapia, T. Viveros García, “Approximate isothermal global effectiveness factor”, Revista Mexicana de Ingenieria Quimica, Vol 2, 183-191, 2003.
J. A. Ochoa Tapia, F. J. Valdes Parada and J. J. Alvarez Ramirez, “Short-cut method for the estimation of isothermal effectiveness factors”, Industrial Engineering Chemical Resource, Vol. 44, pp. 3947-3953, 2005.
F. J. Valdes Parada, J. J. Alvarez Ramirez and J. A. Ochoa Tapia, “An approximate solution for a transient two-phase stirred tank bioreactor with nonlinear kinetics ”, Biotechnology Progress, Vol. 21, pp. 1420-1428, 2005.
C. A. Gonzalez Rugerio and J. A. Ochoa Tapia, “Dynamic behavior of a continuous stirred tank reactor of two phases with a order-zero kinetics”, Revista Mexicana de Ingenieria Quimica, Unpublished.
S. Whitaker, “The method of the Volume Averaging”. Kluwer Academic Publishers, (1999).
J. J. Carberry, Chemical and catalytic reaction engineering, Dover publications, Inc. EUA, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this paper
Cite this paper
Reyes, E.P., Méndez, A.R., Escobar, G.V., Rugerio, C.G. (2007). Approximate Solution to the Diffusion-Reaction Problem with Nonlinear Kinetics in Transient Systems. In: Sobh, T. (eds) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6268-1_25
Download citation
DOI: https://doi.org/10.1007/978-1-4020-6268-1_25
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-6267-4
Online ISBN: 978-1-4020-6268-1
eBook Packages: EngineeringEngineering (R0)
