Skip to main content

Approximate Solution to the Diffusion-Reaction Problem with Nonlinear Kinetics in Transient Systems

  • Conference paper
  • 1478 Accesses

Abstract

A method to obtain the approximate solution to the diffusion-reaction problem with nonlinear kinetics in transient systems is presented. The analytical solution to the equation that governs the process is based on the linearization of the kinetics expression through the Taylor series expansion above the surface particle concentration of the key component, which includes a critical radius to avoid negative concentration values. The present results for the average concentration were compared with the numerical solution of the exact problem and the error was less than ten percent for the power-law and Monod kinetics equation.

Keywords

  • Approximate method
  • Diffusion-reaction problem
  • Linearization
  • Critical radius
  • Dead zone

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. O. Marroquín de la Rosa, J. A. Ochoa Tapia, T. Viveros García, “Método de estimaciòn aproximado del factor de efectividad isotérmico aplicable a cualquier cinética”, Avances en Ingeniería Química, 8 (1), 37-43, (1998).

    Google Scholar 

  2. M. Goto and T. Hirose , “Approximate rate equation for intraparticle diffusion with or without reaction”, Chemical Engineering Science, 48(10), 1912-1915, 1993.

    Google Scholar 

  3. M. K. Szukiewics, “New approximate model for diffusion and reaction in a porous catalyst”, AIChE Journal, Vol. 46 (3), 661-665, 2000.

    CrossRef  Google Scholar 

  4. M. K. Szukiewics, “Approximate model for diffusion and reaction in a porous pellet and an effectiveness factor”, Chemical Enginnering Science, 59, 479-483, 2004.

    CrossRef  Google Scholar 

  5. H. W. Haynes, “An explicit approximation for the effectiveness factor in porous heterogeneous catalysis”, Chemical Enginnering Science, 41, 412-415, 1986.

    CrossRef  Google Scholar 

  6. J. O. Marroquín de la Rosa, J. A. Ochoa Tapia, T. Viveros García, “A linear approximation method to evaluate isothermal effectiveness factors”, Chemical Engineering Community, Vol. 174, pp. 53-60, 1999.

    CrossRef  Google Scholar 

  7. M. K. Szukiewicz, “An approximate model for diffusion and reaction in a porous pellet”, Chemical Engineering Science 57, 1451-1457, 2002.

    CrossRef  Google Scholar 

  8. J. O. Marroquín de la Rosa, J. A. Ochoa Tapia, T. Viveros García, “Approximate isothermal global effectiveness factor”, Revista Mexicana de Ingenieria Quimica, Vol 2, 183-191, 2003.

    Google Scholar 

  9. J. A. Ochoa Tapia, F. J. Valdes Parada and J. J. Alvarez Ramirez, “Short-cut method for the estimation of isothermal effectiveness factors”, Industrial Engineering Chemical Resource, Vol. 44, pp. 3947-3953, 2005.

    CrossRef  Google Scholar 

  10. F. J. Valdes Parada, J. J. Alvarez Ramirez and J. A. Ochoa Tapia, “An approximate solution for a transient two-phase stirred tank bioreactor with nonlinear kinetics ”, Biotechnology Progress, Vol. 21, pp. 1420-1428, 2005.

    CrossRef  Google Scholar 

  11. C. A. Gonzalez Rugerio and J. A. Ochoa Tapia, “Dynamic behavior of a continuous stirred tank reactor of two phases with a order-zero kinetics”, Revista Mexicana de Ingenieria Quimica, Unpublished.

    Google Scholar 

  12. S. Whitaker, “The method of the Volume Averaging”. Kluwer Academic Publishers, (1999).

    Google Scholar 

  13. J. J. Carberry, Chemical and catalytic reaction engineering, Dover publications, Inc. EUA, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Reyes, E.P., Méndez, A.R., Escobar, G.V., Rugerio, C.G. (2007). Approximate Solution to the Diffusion-Reaction Problem with Nonlinear Kinetics in Transient Systems. In: Sobh, T. (eds) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6268-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6268-1_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6267-4

  • Online ISBN: 978-1-4020-6268-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics