Skip to main content

Abstract

This paper presents a quorum-based distributed algorithm for the group mutual exclusion. In the group mutual exclusion problem, multiples processes can enter a critical section simultaneously if they belong to the same group. This algorithm assumes that only one session can be opened at any time, several processes can access to the same session, and any requested session can be opened in a finite time. The message complexity of this algorithm is O(□n ) for the finite projective plane of order 2 (Fano plane) and O(2□n -1) for a grid where n is the total number of processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y.-J. Joung. ‘’Asynchronous Group Mutual Exclusion Algorithm extended abstract),” Proc 17th Ann. ACM Symp. Principles of Distributed Computing, pp. 51-60, June. 1998.

    Google Scholar 

  2. E. Dijkstra. ‘’Solution of a problem in concurrent programming control, ‘’ Communication of the ACM, 8:569, 1965.

    Article  Google Scholar 

  3. L. Lamport. ‘’The mutual exclusion problem: Parts I \& II,” Journal of the ACM, 33(2):313-348, 1986.

    Article  Google Scholar 

  4. M. Maekawa., ‘’A □n Algorithm for Mutual Exclusion in Decentralized Systems,” ACM Trans. Computer Systems, Vol. 3, no. 2, pp. 145-159, May. 1985.

    Article  Google Scholar 

  5. Y.-J. Joung. ‘’Asynchronous Group Mutual Exclusion Algorithm,” D istributed Computing(DC), 13(4):189-206, 2000.

    Article  Google Scholar 

  6. P.Keane and M. Moir. ‘’A Simple Local-Spin Group Mutual Exclusion, ‘’ In ACM Symposium on Principles of Distributed Computing(PODC), pages 23-32, 1999.

    Google Scholar 

  7. I. Suziki and T. Kasami. ‘’A Distributed Mutual Exclusion Algorithm,” ACM Transactions on Computer Systems, 3(4):344-349, 1985.

    Article  Google Scholar 

  8. V. Hadzilacos. ‘’A Note on Group Mutual Exclusion, ”In Proceedings of the 20th ACM Symposium on Principles and Distribute Computing(PODC), Aug. 2001.

    Google Scholar 

  9. S. Cantarell, A. K. Datta, F. Petit, and V. Villain. ‘’Token Based Group Mutual Exclusion for Asynchronous Rings,” In Proceedings of the IEEE Conference on Distributed Computing Systems(ICDCS), pages 691-694, 2001.

    Google Scholar 

  10. K.-P. Wu and Y.-J. Joung. ‘’Asynchronous Group Mutual Exclusion in Ring Networks, ”IEEE Proceedings–Computers and Digital Techniques, 147(1):1-8, 2000.

    Article  Google Scholar 

  11. J. Beauquier, S. Cantarell, A. K. Datta, and F. Petit. ‘’Group Mutual Exclusion in Tree Networks, ”Journal of Information Science and Engineering, 19(3):415-432, May 2003.

    Google Scholar 

  12. Y.-J. Joung. ‘’The Congenial Talking Philosophers Problem in Computer Networks,” Distributed Computing(DC), pages 155-175, 2002.

    Google Scholar 

  13. G. Ricart and A. K. Agrawala. ‘’An Optimal Algorithm for Mutual Exclusuion in Computer Networks,” Communications of the ACM (CACM), 24(1):9-17, Jan. 1981.

    Article  Google Scholar 

  14. B. A. Sanders. ‘’The information structure of mutual exclusion algorithms,” ACM Transactiond on Computer Systems, 5(3):284-299, August 1987.

    Article  Google Scholar 

  15. M. Singhal. ‘’A class of deadlock-free maekawa-type algorithms for mutual exclusion in distributed systems, ‘’ Distributed Computing, pages 131-138, April 1991.

    Google Scholar 

  16. L. Lamport. ‘’Time, clocks, and the ordering of events in a distributed system,” Communications of the ACM, 21(7)558-565, July 1978.

    Article  MATH  Google Scholar 

  17. Y.-J. Joung. ‘’Quorum-Based Algorithms for Group Mutual Exclusion,” In Proceedings of DISC, volume 2180 of LNCS, pages 16-32. Springer-Verlag, 2001.

    Google Scholar 

  18. K. Alagarsamy and K. Vidyasankar. ‘’Elegant Solutions for Group Mutual Exclusion Problem, ‘’ Technical report, Department of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada, 1999.

    Google Scholar 

  19. M. Maekawa. ‘’Algorithm for Mutual Exclusion in Decentralized System., ‘’ ACM Transactions on Computer Systems, 3(2):145-159, May 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Thiare, O., Naimi, M., Gueroui, M. (2007). Access Concurrents Sessions Based on Quorums. In: Elleithy, K. (eds) Advances and Innovations in Systems, Computing Sciences and Software Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6264-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6264-3_61

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6263-6

  • Online ISBN: 978-1-4020-6264-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics