Mesh-adaptive methods for viscous flow problem with rotation

  • E. Gorshkova
  • P. Neittaanmaki
  • S. Repin
Conference paper


In this paper, new functional type a posteriori error estimates for the viscous flow problem with rotating term are presented. The estimates give guaranteed upper bounds of the energy norm of the error and provide reliable error indication. We describe the implementation of the adaptive finite element methods (AFEM) in the framework of the functional type estimates proposed. Computational properties of the estimates are investigated on series of numerical examples.


Posteriori Error Functional Type Stokes Problem Posteriori Error Estimation True Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ainsworth, J. T. Oden, “A posteriori error estimation in finite element analysis”, Wiley, New York, 2000.MATHGoogle Scholar
  2. [2]
    A. Babin, A. Mahalov, and B. Nicolaenko, “Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids”, European Journal of Mechanics, 15, (1996), pp. 291-300.MATHGoogle Scholar
  3. [3]
    A. Babin, A. Mahalov, and B. Nicolaenko, “Resonances and regularity for Boussinesq equations”, Russian Journal of Mathematical Physics, 4, (1996), pp. 417-428.MATHGoogle Scholar
  4. [4]
    A. Babin, A. Mahalov, and B. Nicolaenko, “Global regularity of 3D rotating Navier-Stokes equations for resonant domains”, Indiana University Mathematics Journal, 48, (1999), pp. 1133-1176.MATHGoogle Scholar
  5. [5]
    I. Babuska, W.C. Rheinboldt, “A-posteriori error estimates for the finite element mthod” Int. J. Numer. Methods Eng., Vol. 12. 1978 pp.1597-1615MATHCrossRefGoogle Scholar
  6. [6]
    I. Babuska, W.C. Rheinboldt, “Error estimates for adaptive finite element computations”. SIAM J.Numer. Anal., 1978 V. 15. pp. 736-754MATHCrossRefGoogle Scholar
  7. [7]
    I. Babuska, T. Strouboulis, “The finite element method and its Reliability”, Clarendon Press, New York, 2001.Google Scholar
  8. [8]
    C. Carstensen, R. Hoppe, “Error reduction and cinvergence for an adaptive mixed finite element method”. Math. of Comput, 75(255), 2006, pp. 1033-1042MATHCrossRefGoogle Scholar
  9. [9]
    W. Doerfler, “A convergent adaptive algorithm for Poisson’s equation”. SIAM J. Numer. Anal., Vol. 33 (3), 1996, pp. 1106-1124MATHCrossRefGoogle Scholar
  10. [10]
    P. Embid and A. Majda, Averaging over fast gravity waves for geophysical ows with arbitrary potential vorticity, Communications in Partial Diferential Equations, 21 (1996), pp. 619-658.MATHCrossRefGoogle Scholar
  11. [11]
    I. Gallagher, L. Saint-Raymond, “Weak convergence results for inhomogeneous rotating fluid equation”.∼ gallagher/articles/debut.pdfGoogle Scholar
  12. [12]
    E. Gorshkova, S. Repin, “On the functional type a posteriori error estimates of the Stokes problem”, Proceedings of the 4th European Congress in Applied Sciences and Engineering ECCOMAS 2004 (eds. P.Neittaanmaki, T. Rossi, S. Korotov, E. Onate, J. Periaux, and D. Knorzer), CD-ROM.Google Scholar
  13. [13]
    E. Gorshkova, P. Neittaanmaki, S. Repin “Comparative study of the a posteriori error estimators for the Stokes Problem”, in the proceedings of the The Sixth European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2005), Santiago de Compostela, Spain, pp. 254–259,Springer Berlin, Heidelberg, New York, 2006.Google Scholar
  14. [14]
    P. Neittaanmaki, S. Repin, “Reliable methods for computer simulation. Error control and a posteriori estimates”. ELSEVIER, New York, London, 2004.Google Scholar
  15. [15]
    S.I Repin, “A posteriori estimates for the Stokes problem”. J. Math. Sciences, Vol. 109 (5), 2002, pp.1950–1964CrossRefGoogle Scholar
  16. [16]
    R. Verfurth, “A review of a posteriori error estimation and adaptive mesh–refinement techniques”, Wiley; Teubner, New York, 1996.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • E. Gorshkova
    • 1
  • P. Neittaanmaki
    • 2
  • S. Repin
    • 3
  1. 1.Department of Mathematical Information TechnologyUniversity of JyvaskylaFIN-40014Finland
  2. 2.Department of Mathematical Information TechnologyUniversity of JyvaskylaFIN-40014Finland
  3. 3.V.A. Steklov Institute of Mathematics at St. Petersburg191023, Fontanka 27Russia

Personalised recommendations