Fjord migration and survival of wild and hatchery-reared Atlantic salmon and wild brown trout post-smolts

  • Eva B. Thorstad
  • Finn Økland
  • Bengt Finstad
  • Rolf Sivertsgård
  • Núria Plantalech
  • Pål Arne Bjørn
  • R. Scott McKinley
Fish Telemetry
Part of the Developments in Hydrobiology 195 book series (DIHY, volume 195)


The behaviour of wild (n = 43, mean LT = 152 mm) and hatchery-reared (n = 71, mean LT = 198 mm) Atlantic salmon and wild anadromous brown trout (n = 34, mean LT = 171 mm) post-smolts with acoustic transmitters was compared in a Norwegian fjord system. There was no difference in survival between wild and hatchery reared salmon from release in the river mouth to passing receiver sites 9.5 km and 37.0 km from the release site. Mortality approached 65% during the first 37 km of the marine migration for both groups. There was no difference between wild and hatchery-reared salmon either in time from release to first recording at 9.5 km (mean 135 and 80 h), or in the rate of movement through the fjord (mean 0.53 and 0.56 bl s−1). Hatchery-reared salmon reached the 37 km site sooner after release than the wild salmon (mean 168 and 450 h), but rate of movement in terms of body lengths per second did not differ (mean 0.56 and 0.77 bl s−1). The brown trout remained a longer period in the inner part of the fjord system, with much slower rates of movement during the first 9.5 km (mean 0.06 bl s−1).


Acoustic telemetry Fjord migration Swimming speed Salmo trutta Salmo salar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, N. G., 1999. The effects of predator size, temperature, and prey characteristics on gastric evacuation in whiting. Journal of Fish Biology 54: 287–301.CrossRefGoogle Scholar
  2. Andersen, N. G., 2001. A gastric evacuation model for three predatory gadoids and implications of using pooled field data of stomach contents to estimate food rations. Journal of Fish Biology 59: 1198–1217.CrossRefGoogle Scholar
  3. Blackburn, J. & W. C. Clarke, 1987. Revised procedure for the 24 hour seawater challenge test to measure seawater adaptability of juvenile salmonides. Canadian Technical Report of Fisheries and Aquatic Sciences 1515: 1–39.Google Scholar
  4. Brown, R. S., S. J. Cooke, W. G. Anderson & R. S. McKinley, 1999. Evidence to challenge the “2% rule” for biotelemetry. North American Journal of Fisheries Management 19: 867–871.CrossRefGoogle Scholar
  5. Finstad, B. & N. Jonsson, 2001. Factors influencing the yield of smolt releases in Norway. Nordic Journal of Freshwater Research 75: 37–55.Google Scholar
  6. Finstad, B., F. Økland, E. B. Thorstad, P. A. Bjørn & R. S. McKinley, 2005. Migration of Atlantic salmon and sea trout post-smolts in a Norwegian fjord system. Journal of Fish Biology 66: 86–96.CrossRefGoogle Scholar
  7. Fried, S. M., J. D. McCleave & G. W. LaBar, 1978. Seaward migration of hatchery-reared Atlantic salmon, Salmo salar, smolts in the Penoboscot River estuary, Maine: riverine movements. Journal of the Fisheries Research Board of Canada 35: 76–87.Google Scholar
  8. Hansen, L. P., M. Holm, J. C. Holst & J. A. Jakobsen, 2003. The ecology of post-smolts of Atlantic salmon. In Mills, D. (ed.), Salmon at the Edge. Blackwell Science, Oxford, 25–39.Google Scholar
  9. Hoar, W. S., 1988. The physiology of smolting salmonids. In Hoar, W. S. & D. J. Randall (eds), Fish Physiology: The Physiology of Developing Fish. Viviparity and Posthatching Juveniles, Volume XIB. Academic Press, New York, NY, 275–343.Google Scholar
  10. Hvidsten, N. A. & R. A. Lund, 1988. Predation on hatchery-reared and wild smolts of Atlantic salmon, Salmo salar L., in the estuary of River Orkla. Journal of Fish Biology 33: 121–126.CrossRefGoogle Scholar
  11. Hvidsten, N. A. & P. I. Møkkelgjerd, 1987. Predation on salmon smolts, Salmo salar L., in the estuary of the River Surna. Journal of Fish Biology 30: 273–280.CrossRefGoogle Scholar
  12. Hvidsten, N. A., B. O. Johnsen, A. J. Jensen, P. Fiske, O. Ugedal, E. B. Thorstad, J. G. Jensås, Ø. Bakke & T. Forseth, 2004. Orkla – et nasjonalt referansevassdrag for studier av bestandsregulerende faktorer hos laks. NINA Fagrapport 079: 1–96. Norwegian Institute for Nature Research, Trondheim (In Norwegian with English abstract).Google Scholar
  13. Jepsen, N., E. Holthe & F. Økland, 2006. Observations of predation on salmon and trout smolts in a river mouth. Fisheries Management and Ecology 13: 341–343.CrossRefGoogle Scholar
  14. Jonsson, B., 1985. Life history patterns of freshwater resident and sea-run migrant brown trout in Norway. Transactions of the American Fisheries Society 114: 182–194.CrossRefGoogle Scholar
  15. Jonsson, B., N. Jonsson & L. P. Hansen, 1991. Differences in life history and migratory behaviour between wild and hatchery-reared Atlantic salmon in nature. Aquaculture 98: 69–78.CrossRefGoogle Scholar
  16. Klemetsen, A., P.-A. Amundsen, J. B. Dempson, B. Jonsson, N. Jonsson, M. F. O’Connell & E. Mortensen, 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish 12: 1–59.CrossRefGoogle Scholar
  17. LaBar, G. W., J. D. McCleave & S. M. Fried, 1978. Seaward migration of hatchery-reared Atlantic salmon (Salmo salar) smolts in the Penobscot River estuary, Maine: open water movements. Journal du Conseil international pour l’Exploration de la Mer 38: 257–269.Google Scholar
  18. Lacroix, G. L. & P. McCurdy, 1996. Migratory behaviour of post-smolt Atlantic salmon during initial stages of seaward migration. Journal of Fish Biology 49: 1086–1101.CrossRefGoogle Scholar
  19. Lacroix, G. L. & F. A. Voegeli, 2000. Development of automated monitoring systems for ultrasonic transmitters. In Moore, A. & I. Russell (eds), Advances in Fish Telemetry. Proceedings of the third Conference on Fish Telemetry in Europe. CEFAS, Lowestoft, 37–50.Google Scholar
  20. Lacroix, G. L., P. McCurdy & D. Knox, 2004. Migration of Atlantic salmon post-smolts in relation to habitat use in a coastal system. Transactions of the American Fisheries Society 133: 1455–1471.CrossRefGoogle Scholar
  21. McCleave, J. D. & K. A. Stred, 1975. Effect of dummy telemetry transmitters on stamina of Atlantic salmon (Salmo salar) smolts. Journal of the Fisheries Research Board of Canada 32: 559–563.Google Scholar
  22. Moore, A., G. L. Lacroix & J. Sturlaugsson, 2000. Tracking Atlantic salmon post-smolts in the sea. In Mills, D. (ed.), The Ocean Life of Atlantic Salmon – Environmental and Biological Factors Influencing Survival. Fishing News Books, Oxford, 49–64.Google Scholar
  23. Moore, A., E. C. E. Potter & A. A. Buckley, 1992. Estuarine behaviour of migrating Atlantic salmon (Salmo salar L.) smolts. In Priede, I. M. & S. M. Swift (eds), Wildlife Telemetry. Ellis Horwood Limited, Chichester, 390–399.Google Scholar
  24. Moore, A., E. C. E. Potter, N. J. Milner & S. Bamber, 1995. The migratory behaviour of wild Atlantic salmon (Salmo salar) smolts in the estuary of the River Conwy, North Wales. Canadian Journal of Fisheries and Aquatic Sciences 52: 1923–1935.CrossRefGoogle Scholar
  25. Peake, S., R. S. McKinley, D. A. Scruton & R. Moccia, 1997. Influence of transmitter attachment procedures on swimming performance of wild and hatchery-reared Atlantic salmon smolts. Transactions of the American Fisheries Society 126: 707–714.CrossRefGoogle Scholar
  26. Rikardsen, A. H., 2004. Seasonal occurrence of sea lice Lepeophtheirus salmonis on sea trout in two north Norwegian fjords. Journal of Fish Biology 65: 711–722.CrossRefGoogle Scholar
  27. Sigholt, T. & B. Finstad, 1990. Effect of low temperature on sea-water tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture 84: 167–172.CrossRefGoogle Scholar
  28. Thorstad, E. B., F. Økland, B. Finstad, R. Sivertsgård, P. A. Bjørn & R. S. McKinley, 2004. Migration speed and orientation of Atlantic salmon and sea trout post-smolts in a Norwegian fjord system. Environmental Biology of Fishes 71: 305–311.CrossRefGoogle Scholar
  29. Voegeli, F. A., G. L. Lacroix & J. M. Anderson, 1998. Development of miniature pingers for tracking Atlantic salmon smolts at sea. Hydrobiologia 371/372: 35–46.CrossRefGoogle Scholar
  30. Wedemeyer, G. A., R. L. Saunders & W. C. Clarke, 1980. Environmental factors affecting smoltification and early marine survival of anadromous salmonids. Marine Fisheries Review 42: 1–14.Google Scholar
  31. Welch, D. W., B. R. Ward & S. D. Batten, 2004. Early ocean survival and marine movements of hatchery and wild steelhead trout (Onconhynchus mykiss) determined by an acoustic array: Queen Charlotte Strait, British Columbia. Deep-Sea Research II 51: 897–909.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Eva B. Thorstad
    • 1
  • Finn Økland
    • 1
  • Bengt Finstad
    • 1
  • Rolf Sivertsgård
    • 2
  • Núria Plantalech
    • 1
  • Pål Arne Bjørn
    • 3
  • R. Scott McKinley
    • 4
  1. 1.Norwegian Institute for Nature Research (NINA)TrondheimNorway
  2. 2.Norwegian College of Fishery ScienceUniversity of TromsøTromsøNorway
  3. 3.Norwegian Institute of Fisheries and Aquaculture ResearchTromsøNorway
  4. 4.West Vancouver LaboratoryThe University of British ColumbiaBritish ColumbiaCanada

Personalised recommendations