Skip to main content

Maternal factors in fish oogenesis and embryonic development

  • Chapter
The Fish Oocyte

Maternal factors are essential for early animal development, including fish species. The teleost fish Danio rerio, commonly known as zebrafish, has become a valuable model system to study fish (and vertebrate) biological processes due to its potential to combine genetic, embryological and molecular methods. This chapter attempts to summarize current knowledge on the role of maternal factors in this organism, although studies on the subject carried out in other fish species, when available, are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelilah, S., Solnica-Krezel, L., Stainier, D.Y., Driever, W. Implications for dorsoventral axis determination from the zebrafish mutations janus. Nature 370:468–471 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Abraham, V.C., Gupta, S., Fluck, R.A. Ooplasmic segregation in the medaka Oryzias latipes egg. Biol. Bull. 184:115–124 (1993).

    Article  Google Scholar 

  • Babb, S., Marrs, J.A. E-cadherin regulates cell movements and tissue formation in early zebrafish embryos. Dev. Dyn. 230:263–277 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Bally-Cuif, L., Schatz, W.J., Ho, R.K. Characterization of the zebrafish Orb/CPEB-related RNA-binding protein and localization of maternal components in the zebrafish oocyte. Mech. Dev. 77:31–47 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Bauer, M.P., Goetz, F.W. Isolation of gonadal mutations in adult zebrafish from a chemical mutagenesis screen. Biol. Reprod. 64:548–554 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, V.H.G. Lampbrush chromosomes and RNA synthesis during early oogenesis of Brachydanio rerio (Cyprinidae, Teleostei). Z. Zellforsch 145:145–150 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Becker, K.A., Hart, N.H. The cortical actin cytoskeleton of unactivated zebrafish eggs: spatial organization and distribution of filamentous actin, nonfilamentous actin, and myosin-II. Mol. Reprod. Dev. 43:536–547 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Becker, KA, Hart NH. Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis. J. Cell Sci. 112:97–110 (1999).

    PubMed  CAS  Google Scholar 

  • Bjornson, C.R.R., Griffin, K.J.P., Farr, III G.H., Terashima, A., Himeda, C., Kikuchi, Y., Kimelman, D. Eomesodermin is a localized maternal determinant required for endoderm induction in zebrafish. Dev. Cell 9:523–533 (2005).

    Google Scholar 

  • Blaser, H., Eisenbeiss, S., Neuman, M., Reichman-Fried, M., Thisse, B., Thisse, C., Raz, E. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J. Cell Sci. 118:4027–4038 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Braat, A.K., van de Water, S., Goos, H., Bogerd, J., Zivkovic, D. Vasa protein expression and localization in the zebrafish. Mech. Dev. 95:271–274 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Braat, A.K., Zandbergen, T., van de Water, S., Goos, H.J.T., Zivkovic, D. Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev. Dyn. 216:153–167 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Bruce, A.E.E., Howley, C., Zhou, Y., Vickers, S.L., Silver, L.M., King, M.L., Ho, R.K. The maternally expressed zebrafish T-box gene eomesodermin regulates organizer formation. Development 130:5503–5517 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Cerda, J., Reidenbach, S., Prätzel, S., Franke, W.W. Cadherin-catenin complexes during zebrafish oogenesis: heterotypic junctions between oocytes and follicle cells. Biol. Rep. 61:692–704 (1999).

    Article  CAS  Google Scholar 

  • Cerda, J.L., Petrino, T.R., Wallace, R.A. Functional heterologous gap junctions in Fundulus ovarian follicles maintain meiotic arrest and permit hydration during oocyte maturation. Dev. Biol. 160:228–235 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Chang, D.C., Meng, C. A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo. J. Cell Biol. 131:1539–1545 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Chang, P., Torres, J., Lewis, R.A., Mowry, K.L., Houliston, E., King, M.L. Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol. Biol. Cell 15:4669–4681 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri, A., Mandal, R.K. Nucleoli multiplication and accumulation of RNA in oocytes of catfish (Heteropneustes fossilis). Nucleus, Calcutta 23:78–83 (1980).

    CAS  Google Scholar 

  • Ciruna, B., Weidinger, G., Knaut, H., Thisse, B., Thisse, C., Raz, E. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc. Natl. Acad. Sci. USA 99:14919–14924 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Clérot, J.C. Les groupements mitochondriaux des cellules germinales des poissons téléostéens cyprinides. I. Etude ultrastructurale. J. Ultrastruct. Res. 54:461–475 (1976).

    Article  PubMed  Google Scholar 

  • Créton, R., Speknijder, J.E., Jaffe, L.F. Patterns of free calcium in zebrafish embryos. J. Cell Sci. 111:1613–1622 (1998).

    PubMed  Google Scholar 

  • Dekens, M.P.S., Pelegri,.F.J., Maischein, H.-M., Nüsslein-Volhard, C. The maternal-effect gene futile cycle is essential for pronuclear congression and mitotic spindle assembly in the zebrafish zygote. Development 130:3907–3916 (2003).

    Google Scholar 

  • Dosch, R., Wagner, D.S., Mintzer, K.A., Runke, G., Wiemelt, A.P., Mullins, M.C. Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish. Dev. Cell 6:771–780 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Fluck, R.A., Miller, A.L., Jaffe, L.F. Slow calcium waves accompany cytokinesis in medaka fish eggs. J. Cell Biol. 115:1259–1265 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Forristall, C., Pondel, M., Chen, L., King, M.L. Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2. Development 121:201–208 (1995).

    PubMed  CAS  Google Scholar 

  • Fujii, R., Yamashita, S., Hibi, M., Hirano, T. Asymmetric p38 activation in zebrafish: its possible role in symmetric and synchronous cleavage. J. Cell Biol. 150:1335–1347 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P., Schier, A.F. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Gore, A.V., Sampath, K. Localization of transcripts of the zebrafish morphogen squint is dependent on egg activation and the microtubule cytoskeleton. Mech. Dev. 112:153–156 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Gritsman, K., Zhang, J., Cheng, S., Heckscher, E., Talbot, W.S., Schier, A.F. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97:121–132 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Guraya, S.S. The Cell and Molecular Biology of Fish Oogenesis. Karger, New York, 223 (1969).

    Google Scholar 

  • Hammerschmidt, M., Mullins, M.C. Dorsoventral patterning in the zebrafish: bone morphogenetic proteins and beyond. In: Solnica-Krezel, L. (ed.), Pattern Formation in Zebrafish. Springer, Heidelberg, Germany, pp. 219–255 (2002).

    Google Scholar 

  • Hammerschmidt, M., Pelegri, F., Mullins, M., Kane, D.A., van Eeden, F.J.M., Granato, M., Brand, M., FurutaniSeiki, M., Haffter, P., Heisenberg, C.-P., Jiang, Y.J., Kelsh, R.N., Odenthal, J., Warga, R.M., Nüsslein-Volhard, C. Dino and mercedes, two- genes regulating dorsal development in the zebrafish embryo. Development 123:95–102 (1996).

    PubMed  CAS  Google Scholar 

  • Hart, N.H., Becker, K.A., Wolenski, J.S. The sperm site during fertilization of the zebrafish egg: localization of actin. Mol. Reprod. Dev. 32:217–228 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Hart, N.H., Donovan, M. Fine structure of the chorion and site of sperm entry in the egg of Brachydanio. J. Exp. Zool. 227:277–296 (1983).

    Google Scholar 

  • Hart, N.H., Fluck, R.A. Cytoskeleton in teleost eggs and early embryos: contributions to cytoarchitecture and motile events. Curr. Topics Dev. Biol. 31:343–381 (1995).

    Article  CAS  Google Scholar 

  • Hashimoto, Y., Maegawa, S., Nagai, T., Yamaha, E., Suzuki, H., Yasuda, K., Inoue, K. Localized maternal factors are required for zebrafish germ cell formation. Dev. Biol. 268:152–161 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hisaoka, K.K., Firlit, C.F. The localization of nucleic acids of the zebrafish. Am. J. Anat. 110:203–216 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Howley, C., Ho, R.K. mRNA localization patterns in zebrafish oocytes. Mech. Dev. 92:305–309 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Jesuthasan, S. Furrow-associated microtubule arrays are required for the cohesion of zebrafish blastomeres following cytokinesis. J. Cell Sci. 111:3695–3703 (1998).

    PubMed  CAS  Google Scholar 

  • Jesuthasan, S., Strähle, U. Dynamic microtubules and specification of the zebrafish embryonic axis. Curr. Biol. 7:31–42 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kane, D.A., Hammerschmidt, M., Mullins, M.C., Maischein, H.-M., Brand, M., van Eeden, F.J.M., Furutani-Seiki, M., Granato, M., Haffter, P., Heisenberg, C.-P., Jiang, Y.-J., Kelsh, R.N., Odenthal, J., Warga, R.M., Nüsslein-Volhard, C. The zebrafish epiboly mutants. Development 123:47–55 (1996).

    PubMed  CAS  Google Scholar 

  • Kane, D.A., Kimmel, C.B. The zebrafish midblastula transition. Development 119:447–456 (1993).

    PubMed  CAS  Google Scholar 

  • Kane, D.A., McFarland, K.N., Warga, R.M. Mutations in half baked/E-cadherin block cell behaviors that are necessary for teleost epiboly. Development 132:1105–1116 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kane, D.A., Warga, R.M., Kimmel, C.B. Mitotic domains in the early embryo of the zebrafish. Nature 360:735–737 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Katow, H. Obstruction of blastodisc formation by cytochalasin B in the zebrafish, Brachydanio rerio. Dev. Growth Differ. 25:477–484 (1983).

    Google Scholar 

  • Kelly, C., Chin, A.J., Leatherman, J.L., Kozlowski, D.J., Weinberg, E.S. Maternally controlled β-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127:3899–3911 (2000).

    PubMed  CAS  Google Scholar 

  • Kessel, R.G., Beams, H.W., Tung, H.N. Relationships between annulate lamellae and filament bundles in oocytes of the zebrafish, Brachydanio rerio. Cell Tissue Res. 236:725–727 (1984).

    Google Scholar 

  • Kessel, R.G., Tung, H.N., Roberts, R., Beams, H.W. The presence and distribution of gap junctions in the oocyte-follicle cell complex of the zebrafish, Brachydanio rerio. J. Submicrosc. Cytol. 17:239–253 (1985).

    Google Scholar 

  • Kim, C.-H., Oda, T., Itoh, M., Jiang, D., Artinger, K.B., Chandrasekharappa, S.C., Driever, W., Chitnis, A.B. Repressor activity of Headlesss/Tcf3 is essential for vertebrate head formation. Nature 407:913–916 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kimmel, C.B., Warga, R.M., Schilling, T.F. Origin and organization of the zebrafish fate map. Development 108:581–594 (1990).

    PubMed  CAS  Google Scholar 

  • Kimmel, C., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F. Stages of embryonic development in the zebrafish. Dev. Dyn. 203:253–310 (1995).

    PubMed  CAS  Google Scholar 

  • Kishimoto, Y., Koshida, S., Furutani-Seiki, M., Kondoh, H. Zebrafish maternal-effect mutations causing cytokinesis defects without affecting mitosis or equatorial vasa deposition. Mech. Dev. 121:79–89 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto, Y., Lee, K.-H., Zon, L., Hammerschmidt, M., Schulte-Merker, S. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124:4457–4466 (1997).

    PubMed  CAS  Google Scholar 

  • Kloc, M., Etkin, L.D. Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121:287–297 (1995).

    PubMed  CAS  Google Scholar 

  • Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., Nüsslein-Volhard, C. Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically prior to germ line specification. J. Cell Biol. 149:875–888 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Knaut, H., Steinbeisser, H., Schwarz, H., Nüsslein-Volhard, C. An evolutionary conserved region in the vasa 3′YTP targets RNA translation to the germ cells in the zebrafish. Curr. Biol. 12:454–466 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., Kajiura-Kobayashi, H., Nagahama, Y. Differential espression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech. Dev. 99:139–142 (2000).

    Google Scholar 

  • Kobayashi, T., Kajiura-Kobayashi, H., Nagahama, Y. Two isoforms of vasa homologs in a teleost fish: their differential expression during germ cell differentiation. Mech. Dev. 111:167–171 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Köprunner, M., Thisse, C., Thisse, B., Raz, E. A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev. 15:2877–2885 (2001).

    PubMed  Google Scholar 

  • Koshida, S., Shinya, M., Mizuno, T., Kuroiwa, A., Takeda, H. Initial anteroposterior pattern of the zebrafish central nervous system is determined by differential competence of the epiblast. Development 125:1957–1966 (1998).

    PubMed  CAS  Google Scholar 

  • Kostomarova, A.A. The differentiation capacity of isolated loach (Misgurnis fossilis) blastoderm.

    Google Scholar 

  • J. Embryol. Exp. Morphol. 22:407–430 (1969).

    Google Scholar 

  • Leung, C.F., Webb, S.E., Miller, A.L. Calcium transients accompany ooplasmic segregation in zebrafish embryos. Dev. Growth Differ. 40:313–326 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Leung, C.F., Webb, S.E., Miller, A.L. On the mechanism of ooplasmic segregation in single-cell zebrafish embryos. Dev. Growth Differ. 42:29–40 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Leung, T., Söll, I., Arnold, S.J., Driever, W. Direct binding of Lef1 to sites in the boz promoter may mediate pre-midblastula-transition activation of boz expression. Dev. Dyn. 228:424–432 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Lunde, K., Belting, H.-G., Driever, W. Zebrafish pou5f1/pou2, homolog of mammalian Oct4, functions in the endoderm specification cascade. Curr. Biol. 14:48–55 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Lyman-Gingerich, J., Westfall, T.A., Slusarski, D.C., Pelegri, F. Hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium frequency. Dev. Biol. 286:427–439 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Maegawa, S., Yasuda, K., Inoue, K. Maternal mRNA localization of zebrafish DAZ-like gene. Mech. Dev. 81:223–226 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Malone, TE., Hisaoka, K.K. A histochemical study of the formation of deutoplasmic components in developing oocytes of the zebrafish, Brachydanio rerio. J. Morphol. 112:61–75 (1963).

    Google Scholar 

  • Mathavan, S., Lee, S.G.P., Mak, A., Miller, L.D., Murthy, K.R.K., Govindarajan, K.R., Tong, Y., Wu, Y.L., Lam, S.H., Yang, H., Ruan, Y., Korzh, V., Gong, Z., Liu, D.T., Lufkin, T. Transcriptome analysis of zebrafish embryogenesis using microarrrays. PLoS Genet. 1:260–276 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Miller-Bertoglio, V., Carmany-Rampey, A., Fürthauer, M., Gonzalez, E.M., Thisse, C., Thisse, B., Halpern, M.E., Solnica-Krezel, L. Maternal and zygotic activity of the zebrafish ogon locus antagonizes BMP signaling. Dev. Biol. 214:72–86 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, T., Yamaha, E., Kuroiwa, A., Takeda, H. Removal of vegetal yolk causes dorsal deficiencies and impairs dorsal-inducing ability of the yolk cell in zebrafish. Mech. Dev. 81:51–63 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, T., Yamaha, E., Wakahara, M., Kuroiwa, A., Takeda, H. Mesoderm induction in zebrafish. Nature 383:131–132 (1996).

    Article  CAS  Google Scholar 

  • Mizuno, T., Yamaha, E., Yamazaki, F. Localized axis determinant in the early cleavage embryo of the goldfish, Carassius auratus. Dev. Genes Evol. 206:389–396 (1997). Nasevisius, A., Ekker, S.C. Effective targeted gene “knockdown” in zebrafish. Nat. Genet. 26:216–220 (2000).

    Google Scholar 

  • Nikaido, M., Tada, M., Takeda, H., Kuroiwa, A., Ueno, N. In vivo analysis using variants of zebrafish BMPR-IA: range of action and involvement of BMP in ectoderm patterning. Development 126:181–190 (1999).

    PubMed  CAS  Google Scholar 

  • Nojima, H., Shimizu, T., Kim, C.-H., Yabe, T., Bae, Y.-K., Muraoka, O., Hirata, T., Chitnis, A., Hirano, T., Hibi, M. Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish. Mech. Dev. 121:371–386 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Ober, E.A., Schulte-Merker, S. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev. Biol. 215:167–181 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Odenthal, J., Rossnagel, K., Haffter, P., Kelsh, R.N., Vogelsang, E., Brand, M., van Eeden, F.J.M., Furutani-Seiki, M., Granato, M., Hammerschmidt, M., Heisenberg, C.-P., Jian, Y.-J., Kane, D.A., Mullins, M.C., Nüsslein-Volhard, C. Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio. Development 123:391–398 (1996).

    Google Scholar 

  • Oppenheimer, J.M. The development of isolated blastoderms of Fundulus heteroclitus. J. Exp. Zool. 72:247–269 (1936).

    Article  Google Scholar 

  • Pelegri, F. Maternal factors in zebrafish development. Dev. Dyn. 228:535–54 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Pelegri, F., Dekens, M.P.S., Schulte-Merker, S., Maischein, H.-M., Weiler, C., Nüsslein-Volhard, C. Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev. Dyn. 231:325–336 (2004).

    Article  CAS  Google Scholar 

  • Pelegri, F., Knaut, H., Maischein, H.-M., Schulte-Merker, S., Nüsslein-Volhard, C. A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Curr. Biol. 9:1431–1440 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Pogoda, H.-M., Solnica-Krezel, L., Driever, W., Meyer, D. The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of Nodal signaling required for organizer formation. Curr. Biol. 10:1041–1049 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Pozzoli, O., Gilardelli, C.N., Sordino, P., Doniselli, S., Lamia, C.L., Cotelli, F. Identification and expression pattern of mago nashi during zebrafish development. Gene Exp. Patterns 5:265–272 (2004).

    Article  CAS  Google Scholar 

  • Raz, E. Guidance of primordial germ cell migration. Curr. Opin. Cell Biol. 16:169–173 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Rodaway, A., Takeda, H., Koshida, S., Broadbent, J., Price, B., Smith, J.C., Patient, R., Holder, N. Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-β family signals and discrimination of mesoderm and endoderm by FGF. Development 126:3067–3078 (1999).

    PubMed  CAS  Google Scholar 

  • Selman, K., Wallace, R.A. Cellular aspects of oocyte growth in teleosts. Zool. Sci. 6:211–231 (1989).

    Google Scholar 

  • Selman, K., Wallace, R.A., Sarka, A., Qi, X. Stages of oocyte development in the zebrafish, Brachydanio rerio. J. Morphol. 218:203–224 (1993).

    Google Scholar 

  • Shinomiya, A., Tanaka, M., Kobayashi, T., Nagahama, Y., Hamaguchi, S. The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes. Dev. Growth Differ. 42:317–26 (2000).

    Google Scholar 

  • Sidi, S., Goutel, C., Peyrieras, N., Rosa, F.M. Maternal induction of ventral fate by zebrafish radar. Proc. Natl. Acad. Sci. USA 100:3315–3320 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Sirotkin, H.I., Gates, M.A., Kelly, P.D., Schier, A.F., Talbot, W.S. fast1 is required for the development of dorsal axial structures in zebrafish. Curr. Biol. 10:1051–1054 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ca Slusarski, D.C., Yang-Snyder, J., Busa, W.B., Moon, R.T. Modulation of embryonic intracellular 2+signaling by Wnt-5A. Dev. Biol. 182:114–120 (1997).

    Google Scholar 

  • Speksnijder, J.E., Terasaki, M., Hage, W.J., Jaffe, L.F., Sardet, C. Polarity and reorganization of the endoplasmic reticulum during fertilization and ooplasmic segregation in the Ascidian egg. J. Cell Biol. 120:1337–1346 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Stein, P., Svoboda, P., Schultz, R.M. Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev. Biol. 256:188–193 (2003).

    Article  CAS  Google Scholar 

  • Streisinger, G., Walker, C., Dower, N., Knauber, D., Singer, F. Production of clones of homozygous diploid zebrafish (Brachydanio rerioI). Nature 291:293–296 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., Maegawa, S., Nishibu, T., Sugiyama, T., Yasuda, K., Inoue, K. Vegetal localization of the maternal mRNA encoding an EDEN-BP/Bruno-like protein in zebrafish. Mech. Dev. 93:205–209 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Tung, T.C., Chang, C.Y., Tung, Y.F.Y. Experiments on the developmental potencies of blastoderms and fragments of teleostean eggs separated latitudinally. Proc. Zool. Soc. Lond. 115:175–188 (1945).

    Google Scholar 

  • Volodina, N., Denegre, J.M., Mowry, K.L. Apparent mitochondrial asymmetry in Xenopus eggs. Dev. Dyn. 226:654–662 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Wada, H., Iwasaki, M., Sato, T., Masai, I., Nishiwaki, Y., Tanaka, H., Sato, A., Nojima, Y., Okamoto, H. Dual roles of zygotic and maternal Scribble1 in neural migration and convergent extension movements in zebrafish embryos. Development 132:2273–85 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Wagner, D., Mullins, M.C. Modulation of BMP activity in dorsal-ventral pattern formation by the chordin and ogon antagonists. Dev. Biol. 245:109–123 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Wagner, D.S., Dosch, R., Mintzer, K.A., Wiemelt, A.P., Mullins, M.C. Maternal control of Development at the midblastula transition and beyond: mutants from the zebrafish II. Dev. Cell 6:781–790 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R.A., Selman, K. Ultrastructural aspects of oogenesis and oocyte growth in fish and amphibians. J. Electron Microsc. Tech. 16:175–201 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Waskiewicz, A.J., Rikhof, H.A., Moens, C.B. Eliminating zebrafish Pbx proteins reveals a hindbrain ground state. Dev. Cell 3:723–733 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Webb, S.E., Lee, K.W., Karplus, E., Miller, A.L. Localized calcium transients accompany furrow positioning, propagation, and deepening during the early cleavage period of zebrafish embryos. Dev. Biol. 192:78–92 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Webb, T.A., Kowalski, W.J., Fluck, R.A. Microtubule-based movements during ooplasmic segregation in the medaka fish egg Oryzias latipes. Biol. Bull. 188:146–156 (1995).

    Google Scholar 

  • Weidinger, G., Moon, R.T. When Wnts antagonize Wnts. J. Cell Biol. 162:753–755 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Weidinger, G., Stebler, J., Slanchev, K., Dumstrei, K., Wise, C., Lovell-Badge, R., Thisse, C., Thisse, B., Raz, E. Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cel migration and survival. Curr. Biol. 13:1429–1434 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Wen, C., Zhang, Z., Ma, W., Xu, M., Wen, Z., Peng, J. Genome-wide identification of female-enriched genes in zebrafish. Dev. Dyn. 232:171–179 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Westfall, T.A., Brimeyer, R., Twedt, J., Gladon, J., Olberding, A., Furutani-Seiki, M., Slusarski, D. Wnt5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity. J. Cell Biol. 162:889–898 (2003a).

    Article  PubMed  CAS  Google Scholar 

  • Westfall, T.A., Hjertos, B., Slusarski, D.C. Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning. Dev. Biol. 259:380–391 (2003b).

    Article  PubMed  CAS  Google Scholar 

  • Wienholds, E., Schulte-Merker, S., Walderich, B., Plasterk, R.H.A. Target-selected inactivation of the zebrafish rag1 gene. Science 297:99–102 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Wolke, U., Widinger, G., Köprunner, M., Raz, E. Multiple levels of postranscriptional control lead to germ line-specific gene expression in the zebrafish. Curr. Biol. 12:289–294 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Wylie, C. Germ cells. Cell 96:165–74 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wylie, C. Germ cells. Curr. Opin. Genet. Dev. 10:410–413 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Yabe, T., Shimizu, T., Muraoka, O., Bae, Y.-K., Hirata, T., Nojima, H., Kawakami, A., Hirano, T., Hibi, M. Ogon/secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development 130:2705–2716 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Yamagani, K., Hamazaki, T.S., Yasumasu, S., Masuda, K., Iuchi, I. Molecular and cellular basis of formation, hardening, and breakdown of the egg envelope in fish. Int. Rev. Cytol. 136:51–92 (1992).

    Article  Google Scholar 

  • Yoon, C., Kawakami, K., Hopkins, N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124:3157–3165 (1997).

    PubMed  CAS  Google Scholar 

  • Zamir, E., Kam, Z., Yarden, A. Transcription-dependent induction of G1 phase during the zebrafish midblastula transition. Mol. Cell. Biol. 17:529–536 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lyman-Gingerich, J., Pelegri, F. (2007). Maternal factors in fish oogenesis and embryonic development. In: Babin, P.J., Cerdà, J., Lubzens, E. (eds) The Fish Oocyte. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6235-3_6

Download citation

Publish with us

Policies and ethics