Low-temperature preservation of fish gonad cells and oocytes

  • Tiantian Zhang
  • David M. Rawson
  • Irena Pekarsky
  • Idit Blais
  • Esther Lubzens

Ensuring the retention of a record of the genetic diversity of species involves, at its simplest form, the long-term storage of material from somatic and reproductive cell lines. However, to have real practical benefit such material should be in the form of viable cellular material, ideally from the germline or reproductive cell lines. The ability to generate banks of cryopreserved sperm, eggs, and embryos that retain full viability following recovery from the frozen state would be the most powerful facilitating tool in species conservation and commercial applications such as aquaculture. The nuclear genomes of fish show a full range of sex chromosome differentiation, ranging from the all-autosomal karyotype as seen in the zebrafish to the genetically and cytogenetically differentiated sex chromosomes seen in the guppy (Traut and Winking, 2001). The preservation of haploid genomes in the viable form of male and female reproductive cells, or of viable embryos, is vital if normal populations of males and females are to be established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosini, G., Andrisani, A., Porcu, E., Rebellato, E., Revelli, A., Caserta, A., Cosmi, E., Marci, R., Moscarini, M. Oocyte cryopreservation: state of art. Reprod. Toxicol. 22:250–262 (2006).PubMedCrossRefGoogle Scholar
  2. Arnaud, F.G., Pegg, D.E. Cryoprotection of human platelets with high concentrations of propylene glycol and glycerol. Cryobiology 25:523–524 (1988).CrossRefGoogle Scholar
  3. Barrett, I. Fertility of salmonoid eggs and sperm after storage. J. Fish. Res. Bd. Can.8:125–133 (1951).Google Scholar
  4. Babiak, I., Dobosz, S., Goryczko, K., Kuzminski, H., Brzuan, P., Ciesielski, S. Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors. Theriogenology 57:1229–1249 (2002).PubMedCrossRefGoogle Scholar
  5. Broughton, R.E., Malam, J.E., Roe, B.A. The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res. 11:1958–1967 (2001).PubMedGoogle Scholar
  6. Bubenshchikova, E., Ju, B., Pristyazhnyuk, I., Niwa, K., Kaftanovskaya, E., Kinoshita, M., Ozato, K., Wakamatsu, Y. Generation of fertile and diploid fish, Medaka (Oryzias latipes), from nuclear transplantation of blastula and four-somite-stage embryonic cells into nonenucleated unfertilized eggs. Cloning Stem Cells 7:255–264 (2005).PubMedCrossRefGoogle Scholar
  7. Cabrita, E., Robles, V., Chereguini, O., Wallace, J.C., Herraez, M.P. Effect of different cryoprotectants and vitrification solutions on the hatching rate of turbot embryos (Scophthalmus maximus). Cryobiology 47:204–213 (2003a).PubMedCrossRefGoogle Scholar
  8. Cabrita, E., Robles, V., Chereguini, O., de Paz, P., Anel, L., Herraez, M.P. Dimethyl sulfoxide influx in turbot embryos exposed to a vitrification protocol. Theriogenology 60:463–473 (2003b).PubMedCrossRefGoogle Scholar
  9. Calvi, S.L., Maisse, G. Cryopreservation of rainbow trout (Oncorhynchus mykiss) blastomeres: influence of embryo stage on postthaw survival rate. Cryobiology 36:255–262 (1998).PubMedCrossRefGoogle Scholar
  10. Chen, S.L., Tian, Y.S. Cryopreservation of flounder (Paralichthys alivaceus) embryos by vitrification. Theriogenology 63:1207–1219 (2005).PubMedCrossRefGoogle Scholar
  11. Combs, B.D. Effect of temperature on the development of salmon eggs. Prog. Fish. Cult. 7:134–137 (1965).CrossRefGoogle Scholar
  12. Combs, B.D., Burrows, R.E. Threshold temperatures for the normal development of chinook salmon eggs. Prog. Fish Cult. 1:3–6 (1957).CrossRefGoogle Scholar
  13. Crowe, J.H., Hoekstra, F.A., Crowe, L.M., Anchordoguy, J.T., Drobin, E. Lipid phase transitions measured in intact cells with Fourier Transform infrared spectroscopy. Cryobiology 26:76–84 (1989).PubMedCrossRefGoogle Scholar
  14. Di Berardino, M. Animal cloning–the route to new genomics in agriculture and medicine. Differentiation 68:67–83 (2001).PubMedCrossRefGoogle Scholar
  15. Dinnyes, A., Urbanyi, B., Baranyai, B., Magyaryi, I. Chilling sensitivity of carp (Cyprinus carpio) embryos at different developmental stages in the presence or absence of cryoprotectants: work in progress. Theriogenology 50:1–13 (1998).PubMedCrossRefGoogle Scholar
  16. Drobnis, E.Z., Crowe, L.M., Berger, T., Anchordoguy, T.J., Overstreet, J.W., Crowe, J.H. Cold shock damage is due to lipid phase transition in cell membranes: a demonstration using sperm as a model. J. Exp. Zool. 265:432–437 (1993).PubMedCrossRefGoogle Scholar
  17. Edashige, K., Yamaji, Y., Kleinhans, F.W., Kasai, M. Artificial expression of aqauporin-3 improves the survival of mouse oocytes after cryopreservation. Biol. Reprod. 68:87–94 (2003).PubMedCrossRefGoogle Scholar
  18. Edashige, K., Valdez, D.M., Jr., Hara, T., Saida, N., Seki, S., Kasai, M. Japanese Flounder (Paralichthys alivaceus) embryos are difficult to cryopreserved by vitrification. Cryobiology 53:96–106 (2006).Google Scholar
  19. Fahy, G.M. Cryoprotectant toxicity: biochemical or osmotic? Cryo Lett. 5:79–90 (1984).Google Scholar
  20. Fahy, G.M. The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology 23:1–23 (1986).PubMedCrossRefGoogle Scholar
  21. Fahy, G.M., MacFarlane, D.R., Angell, C.A., Meryman, H.T. Vitrification as an approach to cryopreservation. Cryobiology 21:407–426 (1984).PubMedCrossRefGoogle Scholar
  22. Fahy, G.M., Lilley, T.H., Linasell, H., Douglas, M.H., Meryman, H.T. Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology 27:247–268 (1990).PubMedCrossRefGoogle Scholar
  23. Garside, E.T. Effects of oxygen in relation to temperature on the development of embryos of brook trout and rainbow trout. J. Fish. Res. Bd. Can. 23:1121–1134 (1966).Google Scholar
  24. Grout, B.W.W., Morris, G.J. Freezing and cellular organization. In: Grout, B.W., Morris, G.J. (eds.), Effect of Low Temperatures on Biological Systems. Arnold, London, pp. 147–173 (1987).Google Scholar
  25. Grout, B., Morris, J., Mclellan, M. Cryopreservation and the maintenance of cell lines. Trends Biotechnol. 8:293–297 (1990).PubMedCrossRefGoogle Scholar
  26. Hagedorn, M., Kleinhans, F. Problems and prospects in cryopreservation of fish embryos. In: Tiersch, T.R., Mazik, P.M. (eds.), Cryopreservation in Aquatic Species. World Aquaculture Society, Baton Rouge, LA, pp. 161–178 (2000).Google Scholar
  27. Hagedorn, M., Hsu, E.W., Pilatus, U., Wildt, D., Rall, W.F., Blackband, S.J. Magnetic resonance microscopy and spectroscopy reveal kinetics of cryoprotectant permeation in a multicompartmental biological system. Proc. Natl. Acad. Sci. USA 93:7454–7459 (1996).PubMedCrossRefGoogle Scholar
  28. Hagedorn, M., Kleinhanas, F.W., Artemov, D., Pilatus, U. Characterization of a major permeability barrier in the zebrafish embryo. Biol. Reprod. 59:1240–1250 (1998).PubMedCrossRefGoogle Scholar
  29. Hagedron, M., Lance, S.L., Fonseca, D.M., Kleinhans, F.W., Artimov, D., Fleischer, R., Hoque, A.T.M.S., Hamilton, M.B., Pukazhenthi, B.S. Altering fish embryos with aquaporin-3: an essential step toward successful cryopreservation. Biol. Reprod. 67:961–966 (2002).Google Scholar
  30. Harvey, B. Cooling of embryonic cells, isolated blastoderm and intact embryos of the zebrafish Brachydanio rerio to −196°C. Cryobiology 20:440–447 (1983).PubMedCrossRefGoogle Scholar
  31. Harvey, B., Ashwood-Smith, M.J. Cryoprotectant penetration and suppercooling in the eggs of samonid fishes. Cryobiology 19:29–40 (1982).PubMedCrossRefGoogle Scholar
  32. Isayeva, A., Zhang, T., Rawson, D.M. Studies on chilling sensitivity of zebrafish (Danio rerio) oocytes. Cryobiology 49:114–122 (2004).PubMedCrossRefGoogle Scholar
  33. Jensen, J.O.T., Alderdice, D.F. Effect of temperature on short-term storage of eggs and sperm of chum salmon (Oncorhynchus keta). Aquaculture 37:251–265 (1984).CrossRefGoogle Scholar
  34. Karow, A.M., Jr. Cryoprotectants–a new class of drugs. J. Pharm. Pharmacol. 21:209–223 (1969).PubMedGoogle Scholar
  35. Kobayashi, T., Takeuchi, Y., Takeuchi, Y., Yoshizaki, G. Generation of viable fish from cryopreserved primordial germ cells. Mol. Reprod. Dev. 74:207–213 (2007).PubMedCrossRefGoogle Scholar
  36. Kobayashi, T., Takeuchi, Y., Yoshizaki, G., Takeuchi, Y. Cryopreservation of trout primordial germ cells: a novel techniques for preservation of fish genetic resources. Fish Physiol. Biochem. 28:479–480 (2003).CrossRefGoogle Scholar
  37. Kobayashi, T., Yoshizaki, G., Takeuchi, Y., Takeuchi, T. Isolation of highly pure and viable primordial germ cells from rainbow trout by GFP-dependent flow cytometery. Mol. Reprod. Dev. 67:91–100 (2004).PubMedCrossRefGoogle Scholar
  38. Kusuda, S., Teranishi, T., Koide, N. Cryopreservation of chum salmon blastomeres by the straw method. Cryobiology 45:60–67 (2002).PubMedCrossRefGoogle Scholar
  39. Kusuda, S., Teranishi, T., Koide, N., Nagai, T., Arai, K., Yamaha, E. Pluripotency of cryopreserved blastomeres of the goldfish. J. Exp. Zool. 301A:131–138 (2004).CrossRefGoogle Scholar
  40. Lahnsteiner, F. Cryopreservation protocols for sperm of salmonid fishes. In: Tiersch, T.R., Mazik, P.M. (eds.), Cryopreservation in Aquatic Species. The World Aquaculture Society, Baton Rouge, LA, pp. 91–100 (2000).Google Scholar
  41. Lance, S.L., Peterson, A.S., Hagedorn, M. Developmental expression of aquaporin-3 in zebrafish embryos (Danio rerio). Comp. Biochem. Physiol. C 138:251–258 (2004).Google Scholar
  42. Lee, K.-Y., Huang, H., Ju, B., Yang, Z., Lin, S. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Natl. Biotechol. 20:795–799 (2002).Google Scholar
  43. Liu, X.H., Zhang, T., Rawson, D.M. The effect of partial removal of yolk on the chilling sensitivity of zebrafish (Danio rerio) embryos. Cryobiology 39:236–242 (1999).PubMedCrossRefGoogle Scholar
  44. Loeffler, C.A., Lovtrup, S. Water balance in the salmon egg. J. Exp. Biol. 52:291–298 (1970).Google Scholar
  45. Lubzens, E., Pekarsky, I., Blais, I., Meiri, I. Evaluating viability of fish oocytes: a first step towards methods for cryopreservation. Cryobology 47:268 (2003).Google Scholar
  46. Lubzens, E., Pekarsky, I., Blais, I. Developing methods for cryopreservation of fish oocytes: accumulation of [14C] methods in zebrafish and gilthead seabream oocytes. Cryobiology 49:319 (2004).Google Scholar
  47. Lubzens, E., Pekarsky, I., Blais, I., Cionna, C., Carnevali O. Cryopreservation of oocytes from a marine fish: achievements and obstacles. Cryobiology 51:385 (2005).Google Scholar
  48. Maddock, B.G. A technique to prolong the incubation period of brown trout ova. Prog. Fish Cult. 36:219–222 (1974).CrossRefGoogle Scholar
  49. Magyary, I., Dinnyes, A., Varkonyi, E., Szabo, R., Varadi, L. Cryopreservation of fish embryos and embryonic cells, Aquaculture 137:103–108 (1996).Google Scholar
  50. Maisse, G. Cryopreservation of fish semen: a review. In: Refrigeration and Aquaculture Conference Bordeaux, 20–22/03/96. International Institute of Refrigeration, Paris, pp. 443–467.Google Scholar
  51. Marr, D.H.A. Influence of temperature on the efficiency of growth of salmonid embryos. Nature 11:957–959 (1966).CrossRefGoogle Scholar
  52. Mazur, P. Causes of injury in frozen and thawed cells. Fed. Proc. 24:75–182 (1965).Google Scholar
  53. Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247C:125–142 (1984).Google Scholar
  54. Mazur, P. Principles of Cryobiology. In: Fuller, B., Lane, N., Benson, E. (eds.), Life in the Frozen State. T&F, London, pp. 415–435 (2004).Google Scholar
  55. Morris, G.J. Direct chilling injury. In: Grout, B.W., Morris, G.J. (eds.), Effect of Low Temperatures on Biological Systems. Arnold, London, pp. 120–146 (1987).Google Scholar
  56. Nillson, E.E., Cloud, J.G. Cryopreservation of rainbow trout (Oncorynchus mykiss) blastomeres. Aquat. Living Resour. 6:77–80 (1993).CrossRefGoogle Scholar
  57. Niwa, K., Ladygina, T., Kinoshita, M., Ozato, K., Wakamatsu, Y. Transplantation of blastula nuclei to non-enucleated eggs in medaka, Oryzias latipes. Dev. Growth Differ. 41:163–172 (1999).Google Scholar
  58. Niwa, K., Kani, S., Kinoshita, M., Ozato, K., Wakamatsu, Y. Expression of GFP in nuclear transplants generated by transplantation of embryonic cell nuclei from GFP-transgenic fish into non-enucleated eggs of medaka, Oryzias latipes. Cloning 2:23–34 (2000).Google Scholar
  59. Okutsu, T., Suzuki, K., Takeuchi, Y., Takeucji, T., Yoshizaki, G. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc. Natl. Acad. Sci. USA 103:2725–2729 (2006).PubMedCrossRefGoogle Scholar
  60. Pearl, M., Arav, A. Chilling sensitivity in zebrafish (Brachiodanyo rerio) oocyte is related to lipid phase transition. Cryo Lett. 21:171–178 (2000).Google Scholar
  61. Pegg, D.E., Arnaud, F.G. The optimization of a mixture of two permeating cryoprotectants. Cryobiology 25:509–510 (1988).CrossRefGoogle Scholar
  62. Pelegri, F. Maternal factors in zebrafish development. Dev. Dyn. 22:535–554 (2003).CrossRefGoogle Scholar
  63. Plachinta, M., Zhang, T., Rawson, D.M. Studies on cryoprotectant toxicity to zebrafish (Danio rerio) oocytes. Cryo Lett. 25:415–424 (2004a).Google Scholar
  64. Plachinta, M., Zhang, T., Rawson, D.M. Preliminary studies on cryopreservation of zebrafish (Danio rerio) vitellogenic oocytes using controlled slow cooling. Cryobiology 49:347 (2004b).Google Scholar
  65. Plachinta, M., Zhang, T., Rawson, D.M. Studies on the effect of certain supplements in cryoprotective medium on zebrafish (Danio rerio) oocytes quality after controlled slow cooling. Cryobiology 51:405 (2005).Google Scholar
  66. Poon, D.C., Johnson, S. The effect of delayed fertilization on transported salmon eggs. Prog. Fish Cult. 4:81–84 (1970).CrossRefGoogle Scholar
  67. Prescott, D.M. Effect of activation on the water permeability of salmon eggs. J. Cell. Comp. Physiol. 45:1–12 (1955).CrossRefGoogle Scholar
  68. Pullin, R.S.V., Bailey, H. Progress in storing marine flatfish eggs at low temperatures. Rapp. P. Reun. Cons. Int. Explor. Mer. 178:514–517 (1981).Google Scholar
  69. Rana, K.J., Gilmour, A. Cryopreservation of fish spermatozoa: effect of cooling methods on the reproducibility of cooling rates and viability. Refrigeration and Aquaculture Conference, Bordeaux, pp. 3–12 (1996).Google Scholar
  70. Rall, W.F. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387–402 (1987).PubMedCrossRefGoogle Scholar
  71. Rall, W.F. Advances in the cryopreservation of embryos and prospects for application to the conservation of salmonid fishes. In: Gloud, J.G., Thorgaard, G.H. (eds.), Genetic Conservation of Salmonid Fishes. Plenum Press, New York, pp. 137–158 (1993).Google Scholar
  72. Robles, V., Cabrita, E., Real, M., Alvarez, R., Herraez, M.P. Vitrification of turbot embryos: preliminary assays. Cryobiology 47:30–39 (2003).PubMedCrossRefGoogle Scholar
  73. Robles, V., Cabrita, E., Fletcher, G.L., Shears, M.A., King, M.J., Herraez, M.P. Vitrification assays with embryos from a cold tolerant sub-arctic fish species. Theriogenology 64:1633–1646 (2005).PubMedCrossRefGoogle Scholar
  74. Routray, P., Suzuki, T., Strussmann, C.A., Takai, R. Factors affecting the uptake of DMSO by the eggs and embryos of medaka, Oryzias latipes. Therogenology 58:1483–1496 (2002).Google Scholar
  75. Shepard, M.L., Goldstone, C.S., Cocks, F.H. The H2O-NaCl-glycerol phase diagram and its application in cryobiology. Cryobiology 13:9–23 (1976).PubMedCrossRefGoogle Scholar
  76. Strussmann, C.A., Nakatsugawa, H., Takashima, F., Hasobe, M., Suzuki, T., Takai, R. Cryopreservation of isolated fish blastomeres: effects of cell stage, cryoprotectant concentration, and cooling rate on postthawing survival. Cryobiology 39:252–261 (1999).PubMedCrossRefGoogle Scholar
  77. Takeuchi, Y., Yoshizaki, G., Takeuchi, T. Production of germ-line chimeras in rainbow trout by blastomere transplantation. Mol. Reprod. Dev. 59:380–389 (2001).PubMedCrossRefGoogle Scholar
  78. Takeuchi, Y., Yoshizaki, G., Kobayashi, T., Takeuchi, T. Mass isolation of primordial germ cells from transgenic rainbow trout carrying the green fluorescent protein gene driven by the vasa gene promoter. Biol. Reprod. 67:1087–1092 (2002).PubMedCrossRefGoogle Scholar
  79. Takeuchi, Y., Yoshizaki, G. Takeuchi, T. Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol. Reprod. 69:1142–1149 (2003).PubMedCrossRefGoogle Scholar
  80. Takeuchi, Y., Yoshizaki, G., Takeuchi, T. Surrogate broodstock produces salmonids. Nature 430:629–630 (2004).PubMedCrossRefGoogle Scholar
  81. Tiersch, T.R., Mazik, P.M. Cryopreservation in Aquatic Species. World Aquaculture Society, Baton Rouge, LA (2000).Google Scholar
  82. Toner, M., Cravalho, E.G., Karel, M. Cellular response of mouse oocytes to freezing stress: prediction of intracellular ice formation. J. Biomech. Eng. 115:169–174 (1993).PubMedCrossRefGoogle Scholar
  83. Traut, W., Winking, H. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Res. 9:659–672 (2001).PubMedCrossRefGoogle Scholar
  84. Tsvetkova, L.I., Cosson, J., Linhart, O., Billard, R. Motility and fertilizing capacity of fresh and frozen-thawed spermatozoa in sturgeons Acipenser baeri and A. ruthenus. J. Appl. Ichthyol. 12:107–112 (1996).Google Scholar
  85. Valdez, M.D., Jr., Miyamoto, A., Hara, T., Edashige, K., Kasai, M. Sensitivity to chilling of medaka (Orysias latipes) embryos at various developmental stages. Theriogenology 64:112–122 (2005).Google Scholar
  86. Valdez, M.D., Jr., Hara, T., Miyamoto, A., Seki, S., Jin, B., Kasai, M., Edashige, K. Expression of aqauporin-3 improves the permeability to water and cryoprotectants of immature oocytes in the medaka (Orysias latipes). Cryobiology 53:160–168 (2006).Google Scholar
  87. Wakamatsu, Y., Ju, B., Pristyaznhyuk, I., Niwa, K., Ladygina, T., Kinoshita, M., Araki, K., Ozato, K. Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc. Natl. Acad. Sci. USA 98:1071–1076 (2001).PubMedCrossRefGoogle Scholar
  88. Watson, P.F., Fuller, B.J. Principles of Cryopreservation of Gametes and Embryos. In: Watson, P.F., Holt, W.V. (eds.), Cryobanking the Genetic Resource: Wildlife Conservation for the Future? T&F, London, pp. 156–170 (2001).Google Scholar
  89. Yoshizaki, G., Takeuchi, Y., Sakatani, S., Takeuchi, T. Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter. Int. J. Dev. Biol. 44:323–326 (2000).PubMedGoogle Scholar
  90. Yoshizaki, G., Tagi, Y., Takeuchi, Y., Sawatari, E., Kobayashi, T., Takeuchi, T. Green fluorescent protein labeling of primordial germ cells using nontransgenic method and its application for germ cell transplantation in salmonidae. Biol. Reprod. 73:88–93 (2005).PubMedCrossRefGoogle Scholar
  91. Zhang, X.S., Zhao, L., Hua, T.C., Chen, X.H., Zhu, H.Y. A study on the cryopreservation of common carp (Cyprinus carpio) embryos, Cryo Lett. 10:271–278 (1989).CrossRefGoogle Scholar
  92. Zhang, T.T., Rawson, D.M., Morris, G.J. Cryopreservation of pre-hatch embryos of zebrafish (Brachydanio rerio). Aquat. Living Resour. 6:145–153 (1993).CrossRefGoogle Scholar
  93. Zhang, T., Rawson, D.M. Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryos. Cryobiology 32:239–246 (1995).CrossRefGoogle Scholar
  94. Zhang, T., Rawson, D.M. Permeability of the vitelline membrane of zebrafish (Brachydanio rerio) embryos to methanol and propane-1, 2,-diol. Cryo Lett. 17:273–280 (1996).Google Scholar
  95. Zhang, T., Rawson, D.M. Permeability of dechorionated 1-cell and 6-somite stage zebrafish (Brachydanio rerio) embryos to water and methanol. Cryobiology 37:13–21 (1998).PubMedCrossRefGoogle Scholar
  96. Zhang, T., Isayeva, A., Adams, S.L., Rawson, D.M. Studies on membrane permeability of zebrafish (Danio rerio) oocytes in the presence of different cryoprotectants. Cryobiology 50:285–293 (2005a).PubMedCrossRefGoogle Scholar
  97. Zhang, T., Plachinta, M., Kopeika, J., Rawson, D.M., Cionna, C., Tosti, L., Carnevali, O. Membrane integrity and cathepsin activities of zebrafish (Danio rerio) oocytes after freezing to −196°C using controlled slow cooling. Cryobiology 51:385–386 (2005b).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Tiantian Zhang
    • 1
  • David M. Rawson
    • 1
  • Irena Pekarsky
    • 2
  • Idit Blais
    • 2
  • Esther Lubzens
    • 2
  1. 1.Luton Institute of Research in the Applied Natural SciencesUniversity of LutonLutonUK
  2. 2.National Institute of Oceanography, Israel Oceanographic and Limnological ResearchIsrael

Personalised recommendations