Advertisement

Geometry and statistics in homogeneous isotropic turbulence

  • Aurore Naso
  • Alain Pumir
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 11)

Abstract

In this paper, we consider a phenomenological model, incorporating the main features of hydrodynamic fluid turbulence, aimed at predicting the structure of the velocity gradient tensor, M, coarse-grained at a spatial scale r. This model (M. Chertkov, A. Pumir and B.I. Shraiman, Phys. Fluids 11, 2394 (1999)) is formulated as a set of stochastic ordinary differential equations depending on three dimensionless parameters. The joint probability distribution functions of the second and third invariants of M, as well as the scaling laws of the average enstrophy, strain and energy transfer are computed by using a semi-classical method of resolution of the model. These results are compared with direct numerical simulations (DNS) data. The semi-classical solutions correctly reproduce the DNS data behavior provided the parameter that controls nonlinearity reduction induced by pressure is finely tuned.

Keywords

Direct Numerical Simulation Probability Distribution Function Integral Scale Inertial Range Inertia Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    U. Frisch, Turbulence: The legacy of AN Kolmogorov (Cambridge University Press, 1995).Google Scholar
  2. [2]
    E. Siggia, J. Fluid Mech. 107, (1981) 375.CrossRefGoogle Scholar
  3. [3]
    S. Douady, Y. Couder and M.E. Brachet, Phys. Rev. Lett. 67, (1991) 983.CrossRefGoogle Scholar
  4. [4]
    J. Jimenez, A. Wray, P. Saffman and R. Rogallo, J. Fluid Mech. 255, (1993) 65.CrossRefGoogle Scholar
  5. [5]
    S. Chen, R.E. Ecke, G.L. Eyink, X. Wang and Z. Xiao, Phys. Rev. Lett. 91, (2003) 214501.CrossRefGoogle Scholar
  6. [6]
    F. Van der Bos, B. Tao, C. Meneveau and J. Katz, Phys. Fluids 14, (2002) 2456.CrossRefGoogle Scholar
  7. [7]
    M. Chertkov, A. Pumir and B.I. Shraiman, Phys. Fluids 11, (1999) 2394.CrossRefGoogle Scholar
  8. [8]
    E. Jeong and S. Girimaji, Theoret. Comput. Fluid Dynamics 16, (2003) 421.CrossRefGoogle Scholar
  9. [9]
    A. Naso and A. Pumir, Phys. Rev. E 72, (2005) 056318.CrossRefGoogle Scholar
  10. [10]
    B.J. Cantwell, Phys. Fluids A 4, (1992) 782.CrossRefGoogle Scholar
  11. [11]
    V. Borue and S.A. Orszag, J. Fluid Mech. 366, (1998) 1.CrossRefGoogle Scholar
  12. [12]
    A. Pumir, B.I. Shraiman and M. Chertkov, Phys. Rev. Lett. 85, (2000) 5324.CrossRefGoogle Scholar
  13. [13]
    B. Lüthi, J. Berg, S. Ott and J. Mann, Proceedings of the Euromech colloquium 477 (2006).Google Scholar
  14. [14]
    W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C (Cambridge University Press, 1992) 451.Google Scholar
  15. [15]
    A. Pumir, Phys. Fluids 6, (1994) 2071.CrossRefGoogle Scholar
  16. [16]
    A. Naso, A. Pumir and M. Chertkov, in preparation (2006).Google Scholar
  17. [17]
    A. Naso, M. Chertkov and A. Pumir, J. Turb. 7, (2006) N41.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Aurore Naso
    • 1
  • Alain Pumir
    • 2
  1. 1.Department of Applied PhysicsUniversity of TwenteEnschedeThe Netherlands
  2. 2.Institut Non Linéaire de Nice (U.M.R. C.N.R.S 6618)Université de Nice Sophia AntipolisValbonneFrance

Personalised recommendations