Advertisement

Lagrangian passive scalar intermittency in marine waters: theory and data analysis

  • François G. Schmitt
  • Laurent Seuront
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 11)

Abstract

Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. We consider here intermittency in a Lagrangian framework, which is also a natural representation for marine organisms. We characterize intermittency using multi-fractal power-law scaling exponents. In this paper we recall four theoretical relations previously obtained to link Lagrangian and Eulerian passive scalar multi-fractal functions. We then experimentally estimate these exponents and compare the result to the theoretical relations. Section 1 describes the non intermittent Lagrangian passive scalar scaling laws; section 2 introduces the multi-fractal generalization, and gives the four theoretical relations ; section 3 presents experimental results.

Keywords

Experimental Estimate Passive Scalar Inertial Range Theoretical Relation Lagrangian Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kolmogorov AN (1941) Izv Akad Nauk SSSR 30: 301Google Scholar
  2. [2]
    Obukhov AM (1949) Izv Akad Nauk SSSR Geogr. Geofiz. 13: 58Google Scholar
  3. [3]
    Corrsin S (1951) J Appl Phys 22: 469CrossRefGoogle Scholar
  4. [4]
    Frisch U (1995) Turbulence; The Legacy of AN Kolmogorov. Cambridge University Press, CambridgeGoogle Scholar
  5. [5]
    Kraichnan RH (1994) Phys Rev Lett 72: 1016CrossRefGoogle Scholar
  6. [6]
    Falkovich G, Gawedzki K, Vergassola M (1994) Rev Mod Phys 73: 913CrossRefGoogle Scholar
  7. [7]
    Landau L, Lifshitz EM (1944) Fluid Mechanics. MIR, MoscowGoogle Scholar
  8. [8]
    Inoue E (1952) J Meteorol Soc Japan 29: 246Google Scholar
  9. [9]
    Novikov EA (1989) Phys Fluids A 1:326CrossRefGoogle Scholar
  10. [10]
    Antonia RA, Hopfinger E, Gagne Y, Anselmet F (1984) Phys Rev A 30: 2704CrossRefGoogle Scholar
  11. [11]
    Schmitt FG, Schertzer D, Lovejoy S, Brunet Y (1996) Europhys Lett 34: 195CrossRefGoogle Scholar
  12. [12]
    Schmitt FG (2005) Eur Phys J B 48:129CrossRefGoogle Scholar
  13. [13]
    Ruiz-Chavarria G, Baudet C, Ciliberto S (1996) Physica D 99: 369CrossRefGoogle Scholar
  14. [14]
    Boratav ON, Pelz RB (1998) Phys Fluids 10: 2122CrossRefGoogle Scholar
  15. [15]
    Xu G, Antonia RA, Rajagopalan S (2000) Europhys Lett 49: 452CrossRefGoogle Scholar
  16. [16]
    Moisy F, Willaime H, Andersen JS, Tabeling P (2001) Phys Rev Lett 86: 4827CrossRefGoogle Scholar
  17. [17]
    Gylfason A, Warhaft Z (2004) Phys Fluids 16: 4012CrossRefGoogle Scholar
  18. [18]
    Watanabe T, Gotoh T (2004) New J Phys 6: 40CrossRefGoogle Scholar
  19. [19]
    Pinton JF, Plaza F, Danaila L, Le Gal P, Anselmet F (1998) Physica D 122: 187CrossRefGoogle Scholar
  20. [20]
    Leveque E, Ruiz-Chavarria G, Baudet C, Ciliberto S (1999) Phys Fluids 11: 1869CrossRefGoogle Scholar
  21. [21]
    Mydlarski L (2003) J Fluid Mech 475: 173CrossRefGoogle Scholar
  22. [22]
    Seuront L, Schmitt FG (2004) Geophys Res Lett 31: L03306CrossRefGoogle Scholar
  23. [23]
    Seuront L, Schmitt F, Schertzer D, Lagadeuc Y, Lovejoy S (1996) Nonlin Proc Geophys 3: 236CrossRefGoogle Scholar
  24. [24]
    Benzi R, et al. (1993) Europhysics Letters 24: 275CrossRefGoogle Scholar
  25. [25]
    Seuront L (2005) Mar Ecol Prog Ser 302: 93CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • François G. Schmitt
    • 1
  • Laurent Seuront
    • 1
    • 2
  1. 1.CNRS, FRE 2816 ELICO, Wimereux Marine StationUniversite des Sciences et Technologies de Lille - Lille 1WimereuxFrance
  2. 2.School of Biological SciencesFlinders UniversityAdelaideSouth Australia

Personalised recommendations