Skip to main content

The carbohydrates of Phaeocystis and their degradation in the microbial food web

Review

Abstract

The ubiquity and high productivity associated with blooms of colonial Phaeocystis makes it an important contributor to the global carbon cycle. During blooms organic matter that is rich in carbohydrates is produced. We distinguish five different pools of carbohydrates produced by Phaeocystis. Like all plants and algal cells, both solitary and colonial cells produce (1) structural carbohydrates, (hetero) polysaccharides that are mainly part of the cell wall, (2) mono- and oligosaccharides, which are present as intermediates in the synthesis and catabolism of cell components, and (3) intracellular storage glucan. Colonial cells of Phaeocystis excrete (4) mucopolysaccharides, heteropolysaccharides that are the main constituent of the mucous colony matrix and (5) dissolved organic matter (DOM) rich in carbohydrates, which is mainly excreted by colonial cells. In this review the characteristics of these pools are discussed and quantitative data are summarized. During the exponential growth phase, the ratio of carbohydrate-carbon (C) to particulate organic carbon (POC) is approximately 0.1. When nutrients are limited, Phaeocystis blooms reach a stationary growth phase, during which excess energy is stored as carbohydrates. This so-called overflow metabolism increases the ratio of carbohydrate-C to POC to 0.4–0.6 during the stationary phase, leading to an increase in the C/N and C/P ratios of Phaeocystis organic matter. Overflow metabolism can be channeled towards both glucan and mucopolysaccharides. Summarizing the available data reveals that during the stationary phase of a bloom glucan contributes 0–51% to POC, whereas mucopolysaccharides contribute 5–60%. At the end of a bloom, lysis of Phaeocystis cells and deterioration of colonies leads to a massive release of DOM rich in glucan and mucopolysaccharides. Laboratory studies have revealed that this organic matter is potentially readily degradable by heterotrophic bacteria. However, observations in the field of accumulation of DOM and foam indicate that microbial degradation is hampered. The high C/N and C/P ratios of Phaeocystis organic matter may lead to nutrient limitation of microbial degradation, thereby prolonging degradation times. Over time polysaccharides tend to self-assemble into hydrogels. This may have a profound effect on carbon cycling, since hydrogels provide a vehicle to move DOM up the size spectrum to sizes subject to sedimentation. In addition, it changes the physical nature and microscale structure of the organic matter encountered by bacteria which may affect the degradation potential of the Phaeocystis organic matter.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alderkamp AC, Nejstgaard JC, Verity PG, Zirbel MJ, Sazhin AF, Van Rijssel M (2006a) Dynamics in carbohydrate composition of Phaeocystis pouchetii colonies during spring blooms in mesocosm. J Sea Res 55:169–181

    CrossRef  Google Scholar 

  • Alderkamp AC, Sintes E, Herndl GJ (2006b) Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during the wax and wane of a phytoplankton spring bloom. Aquat Microb Ecol 45:237–246

    Google Scholar 

  • Alderkamp AC, Van Rijssel M, Bolhuis H (2007) Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. FEMS Microb Ecol 59:108–117

    CrossRef  Google Scholar 

  • Allison DG, Sutherland IW (1987) The role of exopolysaccharides in adhesion of fresh-water bacteria. J Gen Microbiol 133:1319–1327

    Google Scholar 

  • Aluwihare LI, Repeta DJ (1999) A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae. Mar Ecol Prog Ser 186:105–117

    Google Scholar 

  • Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41:41–51

    CrossRef  Google Scholar 

  • Arrieta JM, Herndl GJ (2002) Changes in bacterial beta-glucosidase diversity during a coastal phytoplanktonbloom. Limnol Oceanogr 47:594–599

    CrossRef  Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    CrossRef  Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696

    CrossRef  Google Scholar 

  • Azam F, Long RA (2001) Oceanography – sea snow microcosms. Nature 414:495–498

    CrossRef  Google Scholar 

  • Barlow RG (1982) Phytoplankton ecology in the Southern Benguela Current .3. Dynamics of a bloom. J Exp Mar Biol Ecol 63:239–248

    CrossRef  Google Scholar 

  • Baumann MEM, Lancelot C, Brandidni FP, Sakshaugh E, John DM (1994) The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach. J Mar Syst 5:5–22

    CrossRef  Google Scholar 

  • Becquevort S, Rousseau V, Lancelot C (1998) Major and comparable roles for free-living and attached bacteria in the degradation of Phaeocystis-derived organic matter in Belgian coastal waters of the North Sea. Aquat Microb Ecol 14:39–48

    Google Scholar 

  • Benner R, Pakulski JD, McCarty M, Hedges JI, Hatcher PG (1992) Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255:1561–1564

    CrossRef  Google Scholar 

  • Biddanda B, Benner R (1997) Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr 42:506–518

    CrossRef  Google Scholar 

  • Biersmith A, Benner R (1998) Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Mar Chem 63:131–144

    CrossRef  Google Scholar 

  • Billen G, Fontigny A (1987) Dynamics of a Phaeocystis-dominated spring bloom in Belgian coastal waters. II Bacterioplankton dynamics. Mar Ecol Prog Ser 37:249–257

    Google Scholar 

  • Bjørnsen PK (1988) Phytoplankton exudation of organic-matter – why do healthy cells do it? Limnol Oceanogr 33:151–154

    Google Scholar 

  • Bohm N, Kulicke WM (1999) Rheological studies of barley (1->3)(1->4)-beta-glucan in concentrated solution: mechanistic and kinetic investigation of the gel formation. Carbohydr Res 315:302–311

    CrossRef  Google Scholar 

  • Breteler WCMK, Koski M (2003) Development and grazing of Temora longicornis (Copepoda, Calanoida) nauplii during nutrient limited Phaeocystis globosa blooms in mesocosms. Hydrobiologia 491:185–192

    CrossRef  Google Scholar 

  • Brussaard CPD, Riegman R, Noordeloos AAM, Cadée GC, Witte H, Kop AJ, Nieuwland G, Van Duyl FC, Bak RPM (1995) Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar Ecol Prog Ser 123:259–271

    Google Scholar 

  • Brussaard CPD, Gast GJ, Van Duyl FC, Riegman R (1996) Impact of phytoplankton bloom magnitude on a pelagic microbial food web. Mar Ecol Prog Ser 144:211–221

    Google Scholar 

  • Brussaard CPD, Kuipers B, Veldhuis MJW (2005a) A mesocosm study of Phaeocystis globosa population dynamics – 1. Regulatory role of viruses in bloom. Harmful Algae 4:859–874

    CrossRef  Google Scholar 

  • Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW (2005b) A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics – II. Significance for the microbial community. Harmful Algae 4:875–893

    CrossRef  Google Scholar 

  • Carlson CA, Ducklow HW, Hansell DA, Smith WO (1998) Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnol Oceanogr 43:375–386

    CrossRef  Google Scholar 

  • Chang FH (1984) The ultrastructure of Phaeocystis pouchetii (Prymnesiophyceae) vegetative colonies with special reference to the production of new mucilaginous envelope. N Z J Mar Fresh Res 18:303–308

    CrossRef  Google Scholar 

  • Chen YQ, Wang N, Zhang P, Zhou H, Qu LH (2002) Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa. Biochem Syst Ecol 30:15–22

    CrossRef  Google Scholar 

  • Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572

    CrossRef  Google Scholar 

  • Chin WC, Orellana MV, Quesada I, Verdugo P (2004) Secretion in unicellular marine phytoplankton: demonstration of regulated exocytosis in Phaeocystis globosa. Plant Cell Physiol 45:535–542

    CrossRef  Google Scholar 

  • Chiovitti A, Molino P, Crawford SA, Teng RW, Spurck T, Wetherbee R (2004) The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides. Eur J Phycol 39:117–128

    CrossRef  Google Scholar 

  • Chretiennot-Dinet MJ, Giraud-Guille MM, Vaulot D, Putaux JL, Saito Y, Chanzy H (1997) The chitinous nature of filaments ejected by Phaeocystis (Prymnesiophyceae). J Phycol 33:666–672

    CrossRef  Google Scholar 

  • Chróst RJ (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Springer Verlag, New York, pp 29–59

    Google Scholar 

  • Coale KH, Wang XJ, Tanner SJ, Johnson KS (2003) Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170 degrees W. Deep-Sea Res II 50:635–653

    CrossRef  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697

    CrossRef  Google Scholar 

  • Craigie JS (1974) Storage products. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific Publications, Oxford, pp 206–235

    Google Scholar 

  • Cuhel RL, Ortner PB, Lean DRS (1984) Night synthesis of protein by algae. Limnol Oceanogr 29:731–744

    CrossRef  Google Scholar 

  • De Brouwer JFC, Wolfstein K, Stal LJ (2002) Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom. Eur J Phycol 37:37–44

    CrossRef  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments – their role(s) in food webs and marine processes. Oceanogr Mar Biol 28:73–153

    Google Scholar 

  • Dickson DMJ, Kirst GO (1987a) Osmotic adjustment in marine eukaryotic algae – the role of inorganic-ions, quaternary ammonium, tertiary sulfonium and carbohydrate solutes.1. Diatoms and a rhodophyte. New Phytol 106:645–655

    CrossRef  Google Scholar 

  • Dickson DMJ, Kirst GO (1987b) Osmotic adjustment in marine eukaryotic algae – the role of inorganic-ions, quaternary ammonium, tertiary sulfonium and carbohydrate solutes. 2. Prasinophytes and haptophytes. New Phytol 106:657–666

    CrossRef  Google Scholar 

  • DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, Barry JB, VanWoert ML, Dunbar RB (2000) Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404:595–598

    CrossRef  Google Scholar 

  • Eberlein K, Leal MT, Hammer KD, Hickel W (1985) Dissolved organic substances during a Phaeocystis pouchetii bloom in the German Bight (North Sea). Mar Biol 89:311–316

    CrossRef  Google Scholar 

  • Edwards SF (1986) The theory of macromolecular networks. Biorheology 23:589–603

    Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Malden, MA

    Google Scholar 

  • Fernández E, Serret P, Demadariaga I, Harbour DS, Davies AG (1992) Photosynthetic carbon metabolism and biochemical composition of spring phytoplankton assemblages enclosed in microcosms: the diatom Phaeocystis sp. succession. Mar Ecol Prog Ser 90:89–102

    Google Scholar 

  • Fogg GE (1983) The ecological significance of extracellular products of phytoplankton photosynthesis. Bot Mar 26:3–14

    CrossRef  Google Scholar 

  • Geider RJ, La Roche J (1994) The role of iron in phytoplankton photosynthesis and the potential for iron-limitation of primary productivity in the sea. Photosynth Res 39:275–301

    CrossRef  Google Scholar 

  • Granum E, Myklestad SM (1999) Effects of NH4+ assimilation on dark carbon fixation and beta-1,3-glucan metabolism in the marine diatom Skeletonema costatum (Bacillariophyceae). J Phycol 35:1191–1199

    CrossRef  Google Scholar 

  • Granum E, Myklestad SM (2001) Mobilization of beta-1,3-glucan and biosynthesis of amino acids induced by NH4+ addition to N-limited cells of the marine diatom Skeletonema costatum (Bacillariophyceae). J Phycol 37:772–782

    CrossRef  Google Scholar 

  • Guillard RRL, Hellebust JA (1971) Growth and production of extracellular substances by two strain of Phaeocystis pouchetii. J Phycol 7:330–338

    CrossRef  Google Scholar 

  • Hallegraeff GM (1983) Scale-bearing and loricate nanoplankton from the East Australian Current. Bot Mar 16:515

    Google Scholar 

  • Hama J, Handa N (1992) Diel variation of water-extractable carbohydrate composition of natural phytoplankton populations in Kinu-ura Bay. J Exp Mar Biol Ecol 162:159–176

    CrossRef  Google Scholar 

  • Hamm CE, Simson DA, Merkel R, Smetacek V (1999) Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol Prog Ser 187:101–111

    Google Scholar 

  • Heissenberger A, Herndl GJ (1994) Formation of high molecular weight material by free-living marine bacteria. Mar Ecol Prog Ser 111:129–135

    Google Scholar 

  • Hitchcock GL (1980) Diel variation in chlorophyll a, carbohydrate and protein content of the marine diatom Skeletonema costatum. Mar Biol 57:271–278

    CrossRef  Google Scholar 

  • Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566

    CrossRef  Google Scholar 

  • Hong Y, Smith WO, White AM (1997) Studies on transparent exopolymer particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae). J Phycol 33:368–376

    CrossRef  Google Scholar 

  • Janse I, Van Rijssel M, Gottschal JC, Lancelot C, Gieskes WWC (1996a) Carbohydrates in the North Sea during spring blooms of Phaeocystis: a specific fingerprint. Aquat Microb Ecol 10:97–103

    Google Scholar 

  • Janse I, Van Rijssel M, Van Hall PJ, Gerwig GJ, Gottschal JC, Prins RA (1996b) The storage glucan of Phaeocystis globosa (Prymnesiophyceae) cells. J Phycol 32:382–387

    CrossRef  Google Scholar 

  • Janse I, Van Rijssel M, Ottema A, Gottschal JC (1999) Microbial breakdown of Phaeocystis mucopolysaccharides. Limnol Oceanogr 44:1447–1457

    CrossRef  Google Scholar 

  • Janse I, Zwart G, Maarel MJEC, Gottschal JC (2000) Composition of the bacterial community degrading Phaeocystis mucopolysaccharides in enrichment cultures. Aquat Microb Ecol 22:119–133

    Google Scholar 

  • Joint I, Pomroy A (1993) Phytoplankton biomass and production in the southern North-Sea. Mar Ecol Prog Ser 99:169–182

    Google Scholar 

  • Joiris C, Billen G, Lancelot C, Daro MH, Mommaerts JP, Bertels A, Bossicart M, Nijs J, Hecq JH (1982) A budget of carbon cycling in the Belgian coastal zone: relative roles of zooplankton, bacterioplankton and benthos in the utilization of primary production. Neth J Sea Res 16:260–275

    CrossRef  Google Scholar 

  • Kim YT, Kim EH, Cheong C, Williams DL, Kim CW, Lim ST (2000) Structural characterization of beta-D-(1 fwdarw 3, 1 fwdarw 6)-linked glucans using NMR spectroscopy. Carbohydr Res 328:331–341

    CrossRef  Google Scholar 

  • Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria inaquatic environments. FEMS Microbiol Ecol 39:91–100

    Google Scholar 

  • Kornmann P (1955) Beobachtungen an Phaeocystis-Kulturen. Helgol Wiss Meeresunters 5:218–233

    CrossRef  Google Scholar 

  • Laanbroek HL, Verplanke JC, De Visscher PRM, De Vuyst R (1985) Distribution of phyto- and bacterioplankton growth and biomass parameters, dissolved inorganic nutrients and free amino acids during a spring bloom in the Oosterschelde basin, The Netherlands. Mar Ecol Prog Ser 25:1–11

    Google Scholar 

  • Lancelot C, Mathot S (1985) Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short- and long-term incubations with 14C-bicarbonate. II. Phaeocystis poucheti colonial population. Mar Biol 86:227–232

    CrossRef  Google Scholar 

  • Lancelot C, Mathot S (1987) Dynamics of a Phaeocystis-dominated spring bloom in Belgian coastal waters. I Phytoplanktonic activities and related parameters. Mar Ecol Prog Ser 37:239–248

    Google Scholar 

  • Lancelot C, Rousseau V (1994) Ecology of Phaeocystis: the key role of colony forms. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 229–245

    Google Scholar 

  • Lancelot C, Billen G, Sournia A, Weisse T, Colijn F, Veldhuis MJW, Davies A, Wassmann P (1987) Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio 16:38–46

    Google Scholar 

  • Lancelot C, Keller MD, Rousseau V, Smith WO, Mathot S (1998) Autoecology of the marine haptophyte Phaeocystis sp. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer-Verlag, Berlin, pp 209–224

    Google Scholar 

  • Larsson U, Hagström A (1979) Phytoplankton exudate release as an energy-source for the growth of pelagic bacteria. Mar Biol 52:199–206

    CrossRef  Google Scholar 

  • Lazaridou A, Biliaderis CG, Izydorczyk MS (2003) Molecular size effects on rheological properties of oat beta-glucans in solution and gels. Food Hydrocolloids 17:693–712

    CrossRef  Google Scholar 

  • Leadbeater BSC (1994) Cell coverings. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 23–46

    Google Scholar 

  • Lignell R (1990) Excretion of organic-carbon by phytoplankton – its relation to algal biomass, primary productivity and bacterial secondary productivity in the Baltic Sea. Mar Ecol Prog Ser 68:85–99

    Google Scholar 

  • Loogman JG (1982) Influence of photoperiodicy on algal growth kinetics. Ph.D. University of Amsterdam, The Netherlands

    Google Scholar 

  • Magaletti E, Urbani R, Sist P, Ferrari CR, Cicero AM (2004) Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P- limitation. Eur J Phycol 39:133–142

    CrossRef  Google Scholar 

  • Manners DJ, Ryley JF, Stark JR (1966) Studies on the metabolism of the protozoa – the molecular structure of the reserve polysaccharide from Astasia ocellata. Biochem J 101:323–327

    Google Scholar 

  • Marañón E, Cermeño P, Fernández E, Rodríguez J, Zabala L (2004) Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol Oceanogr 49:1652–1666

    CrossRef  Google Scholar 

  • Mari X, Rassoulzadegan F, Brussaard CPD, Wassmann P (2005) Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N- or P-limitation: a controlling factor of the retention/export balance. Harmful Algae 4:895–914

    CrossRef  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic Waters. Nature 345:156–158

    CrossRef  Google Scholar 

  • Mathot S, Smith WO, Carlson CA, Garrison DL, Gowing MM, Vickers CL (2000) Carbon partitioning within Phaeocystis antarctica (Prymnesiophyceae) colonies in the Ross Sea, Antarctica. J Phycol 36:1049–1056

    CrossRef  Google Scholar 

  • Matrai PA, Vernet M, Hood R, Jennings A, Brody E, Saemundsdottir S (1995) Light-dependence of carbon and sulfur production by polar clones of the genus Phaeocystis. Mar Biol 124:157–167

    CrossRef  Google Scholar 

  • Metaxatos A, Panagiotopoulos C, Ignatiades L (2003) Monosaccharide and aminoacid composition of mucilage material produced from a mixture of four phytoplanktonic taxa. J Exp Mar Biol Ecol 294:203–217

    CrossRef  Google Scholar 

  • Moestrup O (1979) Identification by electron microscopy of marine nanaoplankton from New Zealand, including the description of four new species. N Z J Bot 17:61–95

    Google Scholar 

  • Mopper K, Kieber DJ (2001) Marine photochemistry and its impact on carbon cycling. In: De Mora S, Demers S, Vernet M (eds) The effect of UV radiation in the marine environment. Cambridge University Press, Cambridge, UK, pp 102–129

    Google Scholar 

  • Mopper K, Zhou XL, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Photochemical degradation of dissolved organic-carbon and its impact on the oceanic carbon-cycle. Nature 353:60–62

    CrossRef  Google Scholar 

  • Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42:1307–1316

    CrossRef  Google Scholar 

  • Myklestad SM (1974) Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture. J Exp Mar Biol Ecol 15:261–274

    CrossRef  Google Scholar 

  • Myklestad SM (1978) Beta-1,3-glucans in diatoms and brown seaweeds. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 133–141

    Google Scholar 

  • Myklestad SM (1988) Production, chemical structure, metabolism, and biological function of the (1,3)-linked, beta-D-glucans in diatoms. Biol Oceanogr 6:313–326

    Google Scholar 

  • Myklestad SM, Haug A (1972) Production of carbohydrates by the marine diatom Chaetoceros affinis var. Willei (Gran) Hustedt. II Preliminary investigation of the extracellular polysaccharide. J Exp Mar Biol Ecol 9:137–144

    CrossRef  Google Scholar 

  • Myklestad SM, Skanoy E, Hestmann S (1997) A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Mar Chem 56:279–286

    CrossRef  Google Scholar 

  • Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, pp 121–152

    Google Scholar 

  • Nejstgaard JC, Tang KW, Steinke M, Dutz J, Antajan E, Long JD (2007) Zooplankton grazing on Phaeocystis: a critical review and future challenges. Biogeochemistry this issue

    Google Scholar 

  • Orellana MV, Verdugo P (2003) Ultraviolet radiation blocks the organic carbon exchange between the dissolved phase and the gel phase in the ocean. Limnol Oceanogr 48:1618–1623

    CrossRef  Google Scholar 

  • Orellana MV, Lessard EJ, Dycus E, Chin WC, Foy MS, Verdugo P (2003) Tracing the source and fate of biopolymers in seawater: application of an immunological technique. Mar Chem 83:89–99

    CrossRef  Google Scholar 

  • Osinga R, De Vries KA, Lewis WE, Van Raaphorst W, Dijkhuizen L, Van Duyl FC (1997) Aerobic degradation of phytoplankton debris dominated by Phaeocystis sp. in different physiological stages of growth. Aquat Microb Ecol 12:11–19

    Google Scholar 

  • Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic Press, New York, pp 195–285

    Google Scholar 

  • Parke M, Green JC, Manton I (1971) Observations on the fine structure of zoids of the genus Phaeocystis (Haptophyceae). J Mar Biol Assoc UK 51:927–941

    CrossRef  Google Scholar 

  • Passow U, Wassmann P (1994) On the trophic fate of Phaeocystis pouchetii (Hariot): IV. The formation of marine snow by P. pouchetii. Mar Ecol Prog Ser 104:153–161

    CrossRef  Google Scholar 

  • Paulsen BS, Myklestad SM (1978) Structural studies of the reserve glucan produced by the marine diatom Skeletonema costatum. Carbohydr Res 62:386–388

    CrossRef  Google Scholar 

  • Peperzak L, Colijn F, Vrieling EG, Gieskes WWC, Peeters JCH (2000) Observations of flagellates in colonies of Phaeocystis globosa (Prymnesiophyceae); a hypothesis for their position in the life cycle. J Plankt Res 22:2181–2203

    CrossRef  Google Scholar 

  • Percival E (1970) Algal polysaccharides. In: Pigman W, Horton D (eds) The carbohydrates, vol IIB. Academic Press, New York, pp 541–544

    Google Scholar 

  • Post AF, Dubinsky Z, Wyman K, Falkowski PG (1985) Physiological-responses of a marine planktonic diatom to transitions in growth irradiance. Mar Ecol Prog Ser 25:141–149

    Google Scholar 

  • Putt M, Miceli G, Stoecker DK (1994) Association of bacteria with Phaeocystis sp. in McMurdo Sound, Antarctica. Mar Ecol Prog Ser 105:179–189

    Google Scholar 

  • Reichenbach H, Dworkin M (1991) The order Cytophagales. In: Balows A, Truber HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer-Verlag, New York, pp 356–379

    Google Scholar 

  • Renn DW (1997) Purified curdlan and its hydroxyalkyl derivatives: preparation, properties and applications. Carbohydr Pol 33:219–225

    CrossRef  Google Scholar 

  • Riebesell U, Reigstad M, Wassmann P, Noji T, Passow U (1995) On the trophic fate of Phaeocystis pouchetii (Hariot): VI. Significance of Phaeocystis-derived mucus for vertical flux. Neth J Sea Res 33:193–203

    CrossRef  Google Scholar 

  • Riegman R, Van Boekel W (1996) The ecophysiology of Phaeocystis globosa: a review. J Sea Res 35:235–242

    CrossRef  Google Scholar 

  • Rousseau V, Mathot S, Lancelot C (1990) Calculating carbon biomass of Phaeocystis sp. from microscopic observations. Mar Biol 107:305–314

    CrossRef  Google Scholar 

  • Rousseau V, Vaulot D, Casotti R, Cariou V, Lenz J, Gunkel J, Baumann MEM (1994) The life cycle of Phaeocystis (Prymnesiophyceae): evidence and hypotheses. J Mar Syst 5:23–40

    CrossRef  Google Scholar 

  • Rousseau V, Becquevort S, Parent JY, Gasparini S, Daro MH, Tackx M, Lancelot C (2000) Tropic efficiency of the planktonic food web in a coastal ecosystem dominated by Phaeocystis colonies. J Sea Res 43:357–372

    CrossRef  Google Scholar 

  • Sannigrahi P, Ingall ED, Benner R (2005) Cycling of dissolved and particulate organic matter at station Aloha: insights from C-13 NMR spectroscopy coupled with elemental, isotopic and molecular analyses. Deep-Sea Res I 52:1429–1444

    CrossRef  Google Scholar 

  • Schoemann W, Becquevort S, Stefels J, Rousseau W, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    CrossRef  Google Scholar 

  • Seuront L, Lacheze C, Doubell MJ, Seymour JR, Van Dongen-Vogels V, Newton K, Alderkamp AC, Mitchell JG (2007) The influence of Phaeocystis globosa on microscale spatial patterns of chlorophyll a and bulk-phase seawater viscosity. Biogeochemistry this issue

    Google Scholar 

  • Sharp JH (1977) Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol Oceanogr 22:381–399

    Google Scholar 

  • Smith DC, Simon M, Alldredge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–141

    CrossRef  Google Scholar 

  • Smith DC, Steward GF, Long RA, Azam F (1995) Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep Sea Res II 42:75–97

    CrossRef  Google Scholar 

  • Smith WO, Codispoti LA, Nelson DM, Manley T, Buskey EJ, Niebauer HJ, Cota GF (1991) Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352:514–516

    CrossRef  Google Scholar 

  • Smith WO, Carlson CA, Ducklow HW, Hansell DA (1998) Growth dynamics of Phaeocystis antarctica-dominated plankton assemblages from the Ross Sea. Mar Ecol Prog Ser 168:229–244

    Google Scholar 

  • Solomon CM, Lessard EJ, Keil RG, Foy MS (2003) Characterization of extracellular polymers of Phaeocystis globosa and P. antarctica. Mar Ecol Prog Ser 250:81–89

    Google Scholar 

  • Stoderegger K, Herndl GJ (1998) Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton. Limnol Oceanogr 43:877–884

    CrossRef  Google Scholar 

  • Tang KW, Jakobsen HH, Visser AW (2001) Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: feeding, growth, and trophic interactions among grazers. Limnol Oceanogr 46:1860–1870

    CrossRef  Google Scholar 

  • Teira E, Pazo MJ, Quevedo M, Fuentes MV, Niell FX, Fernández E (2003) Rates of dissolved organic carbon production and bacterial activity in the eastern North Atlantic Subtropical Gyre during summer. Mar Ecol Prog Ser 249:53–67

    Google Scholar 

  • Thingstad TF, Billen G (1994) Microbial degradation of Phaeocystis material in the water column. J Mar Syst 5:55–66

    CrossRef  Google Scholar 

  • Thingstad TF, Hagström A, Rassoulzadegan F (1997) Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop? Limnol Oceanogr 42:398–404

    CrossRef  Google Scholar 

  • Underwood GJC, Boulcott M, Raines CA, Waldron K (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40:293–304

    CrossRef  Google Scholar 

  • Vadstein O, Jensen A, Olsen Y, Reinertsen H (1988) Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol Oceanogr 33:489–503

    Google Scholar 

  • Van Boekel WHM (1992) Phaeocystis colony mucus components and the importance of calcium ions for colony stability. Mar Ecol Prog Ser 87:301–305

    Google Scholar 

  • Van Boekel WHM, Hansen FC, Riegman R, Bak RPM (1992) Lysis-induced decline of a Phaeocystis spring bloom and coupling with the microbial foodweb. Mar Ecol Prog Ser 81:269–276

    Google Scholar 

  • Van den Hoek C, Jahns HM, Mann DG (1993) Algen. Georg Thieme Verlag Stuttgard, New York

    Google Scholar 

  • Van Oijen T, Van Leeuwe MA, Gieskes WWC (2003) Variation of particulate carbohydrate pools over time and depth in a diatom-dominated plankton community at the Antarctic Polar Front. Polar Biol 26:195–201

    Google Scholar 

  • Van Oijen T, Van Leeuwe MA, Gieskes WWC, De Baar HJW (2004a) Effects of iron limitation on photosynthesis and carbohydrate metabolism in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). Eur J Phycol 39:161–171

    CrossRef  Google Scholar 

  • Van Oijen T, Van Leeuwe MA, Granum E, Weissing FJ, Bellerby RGJ, Gieskes WWC, De Baar HJW (2004b) Light rather than iron controls photosynthate production and allocation in Southern Ocean phytoplankton populations during austral autumn. J Plankt Res 26:885–900

    CrossRef  Google Scholar 

  • Van Oijen T, Veldhuis MJW, Gorbunov MY, Nishioka J, Van Leeuwe MA, De Baar HJW (2005) Enhanced carbohydrate production by Southern Ocean phytoplankton in response to in-situ iron fertilisation. Mar Chem 93:33–52

    CrossRef  Google Scholar 

  • Van Rijssel M, Hamm CE, Gieskes WWC (1997) Phaeocystis globosa (Prymnesiophyceae) colonies: hollow structures built with small amounts of polysaccharides. Eur J Phycol 32:185–192

    Google Scholar 

  • Van Rijssel M, Janse I, Noordkamp DJB, Gieskes WWC (2000) An inventory of factors that affect polysaccharide production by Phaeocystis globosa. J Sea Res 43:297–306

    CrossRef  Google Scholar 

  • Vårum KM, Kvam BJ, Myklestad SM (1986) Structure of a food-reserve beta-D-glucan produced by the haptophyte alga Emiliania huxleyi (Lohmann) Hay and Mohler. Carbohydr Res 152:243–248

    CrossRef  Google Scholar 

  • Veldhuis MJW, Admiraal W (1985) Transfer of photosynthetic products in gelatinous colonies of Phaeocystis pouchetii (Haptophyceae) and its effect on the measurement of excretion rate. Mar Ecol Prog Ser 26:301–304

    Google Scholar 

  • Veldhuis MJW, Admiraal W, Colijn F (1986a) Chemical and physiological-changes of phytoplankton during the spring bloom, dominated by Phaeocystis pouchetii (Haptophyceae) – observations in Dutch coastal waters of the North Sea. Neth J Sea Res 20:49–60

    CrossRef  Google Scholar 

  • Veldhuis MJW, Colijn F, Venekamp LAH (1986b) The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth J Sea Res 20:37–48

    CrossRef  Google Scholar 

  • Veldhuis MJW, Brussaard CPD, Noordeloos AAM (2005) Living in a Phaeocystis colony: a way to be a successful algal species. Harmful Algae 4:841–858

    CrossRef  Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85

    CrossRef  Google Scholar 

  • Verity PG, Villareal TA, Smayda TJ (1988) Ecological investigations of blooms of colonial Phaeocystis pouchetii. I Abundance, biochemical composition and metabolic rates. J Plankt Res 10:219–248

    CrossRef  Google Scholar 

  • Verity PG, Smayda TJ, Sakshaug E (1991) Photosynthesis, excretion, and growth rates of Phaeocystis colonies and solitary cells. Polar Res 10:117–128

    CrossRef  Google Scholar 

  • Wassmann P (1994) Significance of sedimentation for the termination of Phaeocystis blooms. J Mar Syst 5:81–100

    CrossRef  Google Scholar 

  • Wassmann P, Vernet M, Mitchell BG, Rey F (1990) Mass sedimentation of Phaeocystis pouchetii in the Barents Sea. Mar Ecol Prog Ser 66:183–196

    Google Scholar 

  • Wassmann P, Reigstad M, Oygarden S, Rey F (2000) Seasonal variation in hydrography, nutrients, and suspended biomass in a subarctic fjord: applying hydrographic features and biological markers to trace water masses and circulation significant for phytoplankton production. Sarsia 85:237–249

    Google Scholar 

  • Weisse T, Scheffel-Möser U (1990) Growth and grazing loss rates in single-celled Phaeocystis sp. (Prymnesiophyceae). Mar Biol 106:153–158

    CrossRef  Google Scholar 

  • Zingone A, Chretiennot-Dinet MJ, Lange M, Medlin L (1999) Morphological and genetic characterization of Phaeocystis cordata and P. jahnii (Prymnesiophyceae), two new species from the Mediterranean Sea. J Phycol 35:1322–1337

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Carlijn Alderkamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Alderkamp, AC., Buma, A.G.J., van Rijssel, M. (2007). The carbohydrates of Phaeocystis and their degradation in the microbial food web. In: van Leeuwe, M.A., Stefels, J., Belviso, S., Lancelot, C., Verity, P.G., Gieskes, W.W.C. (eds) Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6214-8_9

Download citation

Publish with us

Policies and ethics