The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology

  • Véronique Rousseau
  • Marie-Josèphe Chrétiennot-Dinet
  • Anita Jacobsen
  • Peter Verity
  • Stuart Whipple
Review Paper


Despite numerous investigations, the number and role of morphotypes involved in the life cycle of Phaeocystis species remain under debate. This is partly due to the application of different methodologies such as light, transmission, scanning electron microscopy and flow cytometry on specific samples. This heterogeneity of approaches results in the incomplete morphometric description of the different cell types existing within one species according to relevant criteria and the indetermination of the ploidy level of each observed stage. We review here the different morphotypes observed within each of the six Phaeocystis species recognized up to now. Four different cell types have been observed. In common to all six species is the occurrence of a scaly flagellate producing star-forming filaments (all species except P. jahnii) or not (P. globosa and P. jahnii). In three colony-forming species, P. globosa, P. pouchetii and P. antarctica, three morphotypes are observed: a flagellate with scales and filaments, a colonial cell, and a flagellate devoid of scales and filaments. In the non-colony-forming species, P. scrobiculata and P. cordata, only flagellates with scales and filaments have been observed. While suspected in P. pouchetii and P. antarctica, a haploid–diploid life cycle has only been evidenced for P. globosa. The two main prominent features of this cycle are that sexuality is prevalent in colony bloom formation and termination and that two types of vegetative reproduction exist. The ecological relevance of alternating haploid and diploid stages is not clearly apparent on the basis of existing ecological studies.


Ecological niche Haploid–diploid Life cycle stages Morphotype Phaeocystis species Sexual processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Admiraal W, Venekamp LAH (1986) Significance of tintinnid grazing during blooms of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth J Sea Res 20:61–66CrossRefGoogle Scholar
  2. Bätje M, Michaelis H (1986) Phaeocystis pouchetii blooms in the East Frisian coastal waters (German Bight, North Sea). Mar Biol 93:21–27CrossRefGoogle Scholar
  3. Baumann MEM, Lancelot C, Brandini FP, Sakshaug E, John DM (1994) The taxonomic identity of the cosmopolitan prymnesiophyte Phaeocystis: a morphological and ecophysiological approach. In: Lancelot C, Wassmann P (eds) Ecology of Phaeocystis-dominated ecosystems. J Mar Syst 5:5–22Google Scholar
  4. Billard C (1994) Life cycles. In Green JC, Leadbeater BSC (Eds) The haptophyte algae. The systematics association special, vol 51. Clarendon Press, Oxford, pp 167–186Google Scholar
  5. Billard C, Inouye I (2004) What is new in coccolithophore biology? In: Thierstein H, Young J (Eds). Coccolithophores – from molecular processes to global impact. Springer-Verlag, Berlin Heidelberg, pp 1–30Google Scholar
  6. Boalch GT (1987) Recent blooms in the Western English Channel. Rapp PV Réun Cons Int Explor Mer.187:94–97Google Scholar
  7. Brussaard CPD, Kuipers B, Veldhuis MJW (2005) A mesocosm study of Phaeocystis globosa population dynamics. I. Regulatory role of viruses in bloom control. In: Veldhuis MJW, Wassmann P (eds) Harmful algae, vol 4. pp 859–874Google Scholar
  8. Buck KR, Garrison DL (1983) Protists from the ice-edge region of the Weddell Sea. Deep Sea Res 30:1261–1277CrossRefGoogle Scholar
  9. Cadée GC (1991) Phaeocystis colonies wintering in the water column? Neth. J Sea Res 28:227–230Google Scholar
  10. Cariou V, Casotti R, Birrien J-L, Vaulot D (1994) The initiation of Phaeocystis colonies. J Plankton Res 16:457–470CrossRefGoogle Scholar
  11. Chen Y-Q, Wang N, Zhang P, Zhou H, Qu L-H (2002) Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa. Biochem Syst Ecol 30:15–22CrossRefGoogle Scholar
  12. Chrétiennot-Dinet M-J, Giraud-Guille M-M, Vaulot D, Puteaux J-L, Saito H, Chanzy Y (1997) The chitinous nature of filaments ejected by Phaeocystis (Prymnesiophyceae). J Phycol 33:666–672CrossRefGoogle Scholar
  13. Chrétiennot-Dinet M-J (1999) An enigma in marine nanoplankton. The role of star-like structures produced by Phaeocystis. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, The Netherlands, pp 205–213Google Scholar
  14. Claustre H, Poulet SA, Williams R, Marty J-C, Coombs S, Ben Mlih F, Hapette AM, Martin- Jezequel V (1990) A biochemical investigation of a Phaeocystis sp. bloom in the Irish sea. J Mar biol Ass UK. 70:197–207Google Scholar
  15. Davidson AT (1985) Aspects of the biology of Phaeocystis pouchetii (Prymnesiophyceae). B Sc Thesis, University of Tasmania, 212 ppGoogle Scholar
  16. Davidson AT, Marchant HJ (1992a) The biology and ecology of Phaeocystis (Prymnesiophyceae). In: Round FE, Chapman DJ (Eds) Progress in phycological research, vol 8. Biopress, Bristol, pp 1–45Google Scholar
  17. Davidson AT, Marchant HJ (1992b) Protist abundance and carbon concentration during a Phaeocystis-dominated bloom at an Antarctic coastal site. Polar Biol 12:387–395CrossRefGoogle Scholar
  18. Dutz J, Koski M (2006) Trophic significance of solitary cells of the prymnesiophyte Phaeocystis globosa depends on cell type. Limnol Oceanogr 51(3):1230–1238Google Scholar
  19. Dutz J, Klein Breteler WCM, Kramer G (2005) Inhibition of copepod feeding by exsudates and transparent exopolymer particles (TEP) derived from a Phaeocystis globosa dominated phytoplankton community. In: Veldhuis MJW, Wassmann P (eds) Harmful algae, vol 4. pp 915–940Google Scholar
  20. Edvardsen B (2002). Life cycle strategies in the haptophyte genera Chrysochromulina and Prymnesium. In: Garcés E, Zingone A, Montresor M, Reguera B, Dale B (eds) Proceedings of the LIFEHAB workshop: life histories of microalgal species causing harmful blooms, vol 12. Calvia, Majorca, Spain, October 2001. Research in Enclosed Seas Series, pp 67–70Google Scholar
  21. Edvardsen B, Paasche E (1992) Two motile stages of Chrysochromulina polylepis (Prymnesiophyceae): morphology, growth and toxicity. J Phycol 28:104–114CrossRefGoogle Scholar
  22. Edvardsen B, Vaulot D (1996) Ploidy analysis of the two motile forms of Chrysochromulina polylepis (Prymnesiophyceae). J Phycol 32:94–102CrossRefGoogle Scholar
  23. Edvardsen B, Eikrem W, Green JC, Andersen RA, Moon-van der Staay SY, Medlin LK (2000) Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia 39(1):19–35CrossRefGoogle Scholar
  24. Eilertsen HC (1989) Phaeocystis pouchetii (Hariot) Lagerheim, a key species in Arctic marine ecosystems: life history and physiology. Rapp PV Réun Cons Int Explor Mer 188:131Google Scholar
  25. Escaravage V, Peperzak L, Prins TC, Peeters JCH, Joordens JCA (1995) The development of a Phaeocystis sp. bloom in a mesocosm experiment in relation to nutrients, irradiance and coexisting algae. Ophelia 42:55–74Google Scholar
  26. Estep KW, Davis PG, Hargraves PE, Sieburth JM (1984) Chloroplast containing microflagellates in natural populations of north Atlantic nanoplankton, their identification and distribution: including a description of five new species of Chrysochromulina (Prymnesiophyceae). Protistol 20:613–634Google Scholar
  27. Fryxell GA (1989) Marine phytoplankton at the Weddell Sea Ice Edge: Seasonal changes at the specific level. Polar Biol 10:1–18CrossRefGoogle Scholar
  28. Gasparini S, Daro M-H, Antajan E, Tackx M, Rousseau V, Parent J-Y, Lancelot C (2000) Mesozooplankton grazing during the Phaeocystis globosa bloom in the Southern Bight of the North Sea. J Sea Res 43:345–356CrossRefGoogle Scholar
  29. Garrison DL, Thomsen HA (1993) Ecology and biology of ice biota. Berichte zur Polarforschung 121:68–74Google Scholar
  30. Gayral P, Fresnel J (1983) Description, sexualité et cycle de développement d’une nouvelle Coccolithophoracée (Prymnesiophyceae): Pleurochrysis pseudoroscoffensis sp. Nov Protistologica 19:245–261Google Scholar
  31. Gieskes WWC, Kraay GW (1975) The phytoplankton spring bloom in Dutch coastal waters of the North Sea. Neth J Sea Res 9:166–196CrossRefGoogle Scholar
  32. Guillou L, Biegala I (2002) Different molecular techniques to examine life cycles of phytoplankton or HAB species. In: Garcés E, Zingone A, Montresor M, Reguera B, Dale B (eds) Proceedings of the LIFEHAB workshop: life histories of microalgal species causing harmful blooms, vol 12. Calvia, Majorca, Spain, October 2001. Research in Enclosed Seas Series, pp 99–101Google Scholar
  33. Gunkel J (1988) Zür Verbreitung von Phaeocystis pouchetii in Phytoplankton der Framstrasse ünter besonderer Berücksichtigung der Kolonie-bildung. PhD thesis, Kiel University, 118 ppGoogle Scholar
  34. Hallegraeff GM (1983) Scale-bearing and loricate nanoplankton from the east Australian current. Bot Mar 26:493–515CrossRefGoogle Scholar
  35. Hamm CE, Simson DA, Merkel R, Smetacek V (1999) Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol Progr Ser 187:101–111Google Scholar
  36. Hamm FC (2000) Architecture, ecology and biogeochemistry of Phaeocystis colonies. J Sea Res 43:307–315CrossRefGoogle Scholar
  37. Hansen FC, van Boekel WHM (1991) Grazing pressure of the calanoid copepod Temora longicornis on a Phaeocystis dominated spring bloom in a Dutch tidal inlet. Mar Ecol Progr Ser 78:123–129Google Scholar
  38. Hansen FCR, Reckermann M, Klein Breteler WCM, Riegman R (1993) Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar Ecol Progr Ser 102:51–57Google Scholar
  39. Hoepffner N, Haas LW (1990) Electron microscopy of nanoplankton from the North Pacific Central Gyre. J Phycol 26:421–439CrossRefGoogle Scholar
  40. Houdan A, Billard C, Marie D, Not F, Saez AG, Young JR, Probert J (2004) Holococcolithophore-heterococcolithophore (Haptophyta) life cycles: flow cytometric analysis of relative ploidy levels. Systemat Biodiv 4:453–465Google Scholar
  41. Jacobsen A (2002) Morphology, relative DNA content and hypothetical life cycle of Phaeocystis pouchetii (Prymnesiophyceae) with special emphasis on the flagellated cell type. Sarsia 87:338–349CrossRefGoogle Scholar
  42. Jacobsen A, Bratbak G, Heldal M (1996) Isolation and characterization of virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J Phycol 32:923–927CrossRefGoogle Scholar
  43. Jacobsen A, Veldhuis MJW (2005) Growth characteristics of flagellated cells of Phaeocystis pouchetii revealed by diel changes in cellular DNA content. In: Veldhuis MJW, Wassmann P (eds) Harmful Algae, vol 4. pp 811–821Google Scholar
  44. Jahnke J, Baumann M (1987) Differentiation between Phaeocystis pouchetii (Har.) Lagerheim and Phaeocystis globosa Scherffel. Colony shapes and temperature tolerances. Hydrobiol Bull 21:141–147CrossRefGoogle Scholar
  45. Jakobsen HH, Tang KW (2002) Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits. Aquat Microb Ecol 27:261–273Google Scholar
  46. Jones PGW, Haq SM (1963). The distribution of Phaeocystis in the eastern Irish sea. J Cons Intern Expl Mer 28:8–20Google Scholar
  47. Kang SH, Lee S (1995) Antarctic phytoplankton assemblage in the western Bransfield Strait region, February 1993: composition, biomass, and mesoscale distributions. Mar Ecol Progr Ser 129:253–267Google Scholar
  48. Kashkin NI (1963). Materials on the ecology of Phaeocystis pouchetii (Hariot) Lagerheim, 1893 (Chrysophyceae) II. Habitat and specifications of biogeographical characteristics. Okeanologiya, Moscow 3:697–705Google Scholar
  49. Kayser H (1970) Experimental-ecological investigations on Phaeocystis pouchetii (Haptophyceae): cultivation and waste water test. Helgoländer Wiss. Meeresunt 20:195–212CrossRefGoogle Scholar
  50. Kondrashov AS, Crow JF (1991) Haploidy or diploidy: which is better? Nature 351:314–317CrossRefGoogle Scholar
  51. Kornmann P (1955) Beobachtungen an Phaeocystis-Kulturen. Helgoländer Wiss Meeresunt 5:218–233CrossRefGoogle Scholar
  52. Koski M, Dutz J, Klein Breteler WCM (2005). Selective grazing of Temora longicornis in different stages of a Phaeocystis globosa bloom – a mesocosm study. In: Veldhuis MJW, Wassmann P (eds) Harmful Algae 4:915–927Google Scholar
  53. Lagerheim G (1893) Phæocystis, nov. gen., grundadt på Tetraspora Poucheti Har. Botaniska Notiser, pp 32–33Google Scholar
  54. Lagerheim G (1896). Ueber Phæocystis Poucheti (Har.) Lagerh., eine Plankton-Flagellate. Öfversigt af K. Vetensk.-Akad. Förhanlingar, Stockholm 4:277–288Google Scholar
  55. Lancelot C, Mathot S (1985) Biochemical fractionation of primary production by phytoplakton in Belgian coastal waters during short- and long-term incubations with 14C-bicarbonate. Mar Biol 86:219–226CrossRefGoogle Scholar
  56. Lancelot C, Rousseau V (1994) Ecology of Phaeocystis: the key role of colony forms. In: Green JC, Leadbeater BSC (eds) The Haptophyte Algae, vol 51. Clarenton Press, Oxford, pp 229–245Google Scholar
  57. Lancelot C, Rousseau V (2002) Life cycle in Haptophyta. In: Garcés E, Zingone A, Montresor M., Reguera B, Dale B (eds) Proceedings of the LIFEHAB workshop: life histories of microalgal species causing harmful blooms, vol 12. Calvia, Majorca, Spain, October 2001, Research in Enclosed Seas Series, pp 88–90Google Scholar
  58. Lancelot et al. (1991) Dynamics of Phaeocystis blooms in nutrient enriched coastal zones. In: Lancelot C, Billen G, Barth H (eds) Proceedings of the third workshop Plymouth, March 6–7, 1990, pp 106. Water Pollution Research report 23Google Scholar
  59. Lancelot C, Keller MD, Rousseau V, Smith WO, Mathot S (1998) Autecology of the marine Haptophyte Phaeocystis sp. In: Anderson DM, Cembella AD, Hallagraeff GM (Eds) Physiological ecology of harmful algal blooms, vol. G 41. Springer-Verlag, Berlin, pp 209–224Google Scholar
  60. Lancelot C, Rousseau V, Schoemann V, Becquevort S (2002). On the ecological role of the different life forms of Phaeocystis. In: Garcés E, Zingone A, Montresor M., Reguera B, Dale B (eds) Proceedings of the workshop LIFEHAB: Life histories of microalgal species causing harmful blooms, vol 12. Calvia, Majorca, Spain, octobre 2001. Research in Enclosed Seas series, pp 71–75Google Scholar
  61. Lange M, Chen Y-Q, Medlin LK (2002) Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur J Phycol 37:77–92CrossRefGoogle Scholar
  62. Larsen A (1999) Prymnesium parvum and P. patelliferum (Haptophyta) – one species. Phycologia 38:541–543CrossRefGoogle Scholar
  63. Larsen A, Edvardsen B (1998) Relative ploidy levels in Prymnesium parvum and P. patelliferum (Haptophyta) analyzed by flow cytometry. Phycologia 37(6):412–424CrossRefGoogle Scholar
  64. Lewis WM (1985). Nutrient scarcity as an evolutionary cause of haploidy. Am Nat 125:692–701CrossRefGoogle Scholar
  65. Liss PS, Malin G, Turner SM, Holligan PM (1994) Dimethyl sulphide and Phaeocystis: a review. In: Lancelot C, Wassmann P (eds) Ecology of Phaeocystis-dominated ecosystems. J Mar Syst 5:41–53Google Scholar
  66. Long JD, Hay ME (2006) When intraspecific exceeds interspecific variance: Effects of phytoplankton morphology and growth phase on copepod feeding and fitness. Limnol Oceanogr 51:988–996CrossRefGoogle Scholar
  67. Mable BK, Otto SP (1998) The evolution of life cycles with haploid and diploid phases. BioEssays 20:453–462CrossRefGoogle Scholar
  68. Marchant H, Thomsen HA (1994) Haptophytes in polar waters. In: Green JC, Leadbeater BSC (Eds). The haptophyte algae, vol 51. Clarenton Press, Oxford, pp 209–228Google Scholar
  69. Mathot S, Smith WOJ, Carlson CA, Garrison DL, Gowing MM, Vickers CL (2000) Carbon partitioning within Phaeocystis antarctica (prymnesiophyceae) colonies in the Ross Sea, Antarctica. J Phycol 36:1049–1056CrossRefGoogle Scholar
  70. Medlin LK, Lange M, Baumann MEM (1994) Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33:199–212Google Scholar
  71. Medlin LK and Zingone A (this issue) A taxonomic review of the genus Phaeocystis. BiogeochemistryGoogle Scholar
  72. Moestrup Ø (1979) Identification by electron microscopy of marine nanoplankton from New Zealand, including the description of four new species. N Z J Bot 17:61–95Google Scholar
  73. Moestrup Ø, Larsen J (1992) Potentially toxic phytoplankton. 1. Haptophyceae (Prymnesiophyceae). In: Lindley JS (ed) ICES identification leaflets for plankton No 179. International Council for the Exploration of the Sea, Copenhagen, pp 11Google Scholar
  74. Nejstgaard JC, Tang KW, Steinke M, Dutz J, Koski M, Antajan E, Long JD (this issue) Zooplankton grazing on Phaeocystis: a quantitative status and future challenges. Biogeochemistry. this volumeGoogle Scholar
  75. Noordkamp JB, Gieskes WWC, Gottschal JC, Forney LJ, Van Rijssel M (2000) Acrylate in Phaeocystis colonies does not affect the surrounding bacteria. J Sea Res 43:287–296CrossRefGoogle Scholar
  76. Paasche E, Edvardsen B, Eikrem W (1990) A possible alternate stage in the life cycle of Chrysochromulina polylepis Manton et Parke (Prymnesiophyceae). Nova Hedwigia Beihefte 100:91–99Google Scholar
  77. Parke M, Green JC, Manton I (1971) Observations on the fine structure of zoids of the genus Phaeocystis (Haptophyceae). J Mar Biol Assoc UK 51:927–941CrossRefGoogle Scholar
  78. Peperzak L (1993) Daily irradiance governs growth rate and colony formation of Phaeocystis (Prymnesiophyceae). J Plankton Res 15:809–821CrossRefGoogle Scholar
  79. Peperzak L, Colijn F, Gieskes WWC, Peeters JCH (1998) Development of the diatom-Phaeocystis spring bloom in the Dutch coastal zone of the North Sea: the silicon depletion versus the daily irradiance threshold hypothesis. J Plankton Res 20:517–537CrossRefGoogle Scholar
  80. Peperzak L, Colijn F, Vrieling EG, Gieskes WWC, Peeters JCH (2000a) Observations of flagellates in colonies of Phaeocystis globosa (Prymnesiophyceae): a hypothesis for their position in the life cycle. J Plankton Res 22:2181–2203CrossRefGoogle Scholar
  81. Peperzak L, Duin RMN, Colijn F, Gieskes WWC (2000b) Growth and mortality of flagellates and non-flagellate cells of Phaeocystis globosa (Prymnesiophyceae). J Plankton Res 22:107–119CrossRefGoogle Scholar
  82. Ploug H, Stolte W, Jørgensen BB (1999) Diffusive boundary layers of the colony-forming plankton alga, Phaeocystis sp. – implications for nutrient uptake and cellular growth. Limnol Oceanogr 44:1959–1967CrossRefGoogle Scholar
  83. Putt M, Miceli G, Stoecker DK (1994) Association of bacteria with Phaeocystis sp. in McMurdo Sound, Antarctica. Mar Ecol Progr Ser 105:179–189Google Scholar
  84. Riegman R, Noordeloos A, Cadée GC (1992) Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar Biol 112:479–484CrossRefGoogle Scholar
  85. Rousseau V, Mathot S, Lancelot C (1990) Calculating carbon biomass of Phaeocystis sp. from microscopic observations. Mar Biol 107:305–314CrossRefGoogle Scholar
  86. Rousseau V, Vaulot D, Casotti R, Cariou V, Lenz J, Gunkel J, Baumann M (1994) The life cycle of Phaeocystis (Prymnesiophyceae): evidence and hypotheses. In: Lancelot C, Wassmann P (eds) Ecology of Phaeocystis-dominated ecosystems. J Mar Syst 5:23–40Google Scholar
  87. Schapira M (2005) Dynamique spatio-temporelle de Phaeocystis globosa en Manche Orientale: effets de la turbulence et des apports sporadiques en sels nutritifs. PhD Thesis. Université de Lille, France, 316 ppGoogle Scholar
  88. Schapira M, Seuront L, Gentilhomme V (2006) Effects of small-scale turbulence on Phaeocystis globosa (Prymnesiophyceae) growth and life cycle. J Exp Mar Biol Ecol 335(1):27–38CrossRefGoogle Scholar
  89. Scherffel A (1899) Phaeocystis globosa n. sp. (Vorläufige Mittheilung). Berichte der Deutschen Botanischen Gesellschaft 17:317–318Google Scholar
  90. Scherffel A (1900) Phaeocystis globosa nov. spec. nebst einigen Betrachtungen über die Phylogenie niederer, insbesondere brauner Organismen. Wissenschaftliche Meeresuntersuchungen Abteilung Helgoland NF Bd 4:1–29Google Scholar
  91. Schoemann V, Wollast R, Chou L, Lancelot C (2001) Effects of photosynthesis on the accumulation of Mn and Fe by Phaeocystis colonies. Limnol Oceanogr 46:1065–1076CrossRefGoogle Scholar
  92. Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005). Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66CrossRefGoogle Scholar
  93. Smith WOJr, Dennett MR, Mathot S, Caron D (2003) The temporal dynamics of the flagellated and colonial stages of Phaeocystis antarctica in the Ross Sea. Deep-Sea Res II 50:605–617CrossRefGoogle Scholar
  94. Sournia A (1988) Phaeocystis (Prymnesiophyceae): How many species? Nova Hedwigia 47:211–217Google Scholar
  95. Sukhanova IN, Flint MV (2001) Phaeocystis pouchetii at the Eastern Bering Sea Shelf. Oceanology 41:75–85Google Scholar
  96. Tang KW (2003). Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal. J Plankt Res 25(7):831–842CrossRefGoogle Scholar
  97. Tang KW, Jacobsen HH, Visser AW (2001) Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: feeding, growth, and trophic intercations among grazers. Limnol Oceanogr 46(8):1860–1870CrossRefGoogle Scholar
  98. Turner JT, Ianora A, Esposito F, Carotenuto Y, Miralto A (2002). Zooplankton feeding ecology: does a diet of Phaeocystis support good copepod grazing, survival, egg production and egg hatching success. J Plankton Res 24(11):1185–1195CrossRefGoogle Scholar
  99. Valero M, Richerd S, Perrot V, Destombe C (1992) Evolution of alternation of haploid and diploid phases in life cycles. Trends Ecol Evol 7(1):25–29CrossRefGoogle Scholar
  100. van Boekel WHM, Veldhuis MJW (1990) Regulation of alkaline phosphatase synthesis in Phaeocystis sp. Mar Ecol Progr Ser 61:281–289Google Scholar
  101. van Rijssel M, Hamm CE, Gieskes WWC (1997) Phaeocystis globosa (Prymnesiophyceae) colonies: hollow structures built with small amounts of polysaccharides. Eur J Phycol 32:185–192Google Scholar
  102. Vaulot D, Birrien J-L, Marie D, Casotti R, Veldhuis MJ, Kraay GW, Chrétiennot-Dinet M-J (1994) Morphology, ploidy, pigment composition and genome size of cultured strains of Phaeocystis (Prymnesiophyceae). J Phycol 30:1022–1035CrossRefGoogle Scholar
  103. Veldhuis MJW, Admiraal W (1985) Transfer of photosynthetic products in gelatinous colonies of Phaeocystis pouchetii (Haptophyceae) and its effect on the measurement of excretion rate. Mar Ecol Progr Ser 26:301–304Google Scholar
  104. Veldhuis MJW, Admiraal W (1987) Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Mar Biol 95:47–54CrossRefGoogle Scholar
  105. Veldhuis MJW, Colijn F, Venekamp LAH (1986) The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth J Sea Res 20:37–48CrossRefGoogle Scholar
  106. Veldhuis MJW, Colijn F, Admiraal W (1991) Phosphate utilization in Phaeocystis pouchetii (Haptophyceae). Mar Ecol 12:53–62Google Scholar
  107. Veldhuis MJW, Brussaard CPD, Noordeloos AAM (2005) Living in a Phaeocystis colony: a way to be successful algal species. In: Veldhuis MJW, Wassmann P (eds) Harmful Algae 4:841–858Google Scholar
  108. Verity PG (2000). Grazing experiments and model simulations of the role of mesozooplankton in Phaeocystis food webs. J Sea Res 43:317–344CrossRefGoogle Scholar
  109. Verity PG, Smayda TJ (1989) Nutritional value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Acartia spp. (Copepoda): Ingestion, egg production, and growth of nauplii. Mar Biol 100:161–171CrossRefGoogle Scholar
  110. Verity PG, Medlin LK (2003) Observations on colony formation by the cosmopolitan phytoplankton genus Phaeocystis. J Mar Syst 423:153–164CrossRefGoogle Scholar
  111. Verity PG, Villareal TA, Smayda TJ (1988a) Ecological investigations of blooms of colonial Phaeocystis pouchetii. I. Abundance, biochemical composition and metabolic rates. J Plankton Res 10:219–248CrossRefGoogle Scholar
  112. Verity PG, Villareal TA, Smayda TJ (1988b) Ecological investigations of blooms of colonial Phaeocystis pouchetii. II. The role of life cycle phenomena in bloom termination. J Plankton Res 10:749–766CrossRefGoogle Scholar
  113. Wassmann P, Ratkova T, Reigstad M (2005) The contribution of single and colonial cells of Phaeocystis pouchetii to spring and summer blooms in the north-eastern North Atlantic. In: Veldhuis MJW, Wassmann P (eds) Harmful algae, vol 4. pp 823–840Google Scholar
  114. Weisse T, Scheffel-Möser U (1990). Growth and grazing loss rates in single-celled Phaeocystis sp. (Prymnesiophyceae). Mar Biol 106:153–158CrossRefGoogle Scholar
  115. Weisse T, Grimm N, Hickel W, Martens P (1986) Dynamics of Phaeocystis pouchetii blooms in the Wadden Sea of Sylt (German Bight, North Sea). Est Coast Shelf Sc 23:171–182CrossRefGoogle Scholar
  116. Weisse T, Tande K, Verity P, Hansen F, Gieskes W (1994) The trophic significance of Phaeocystis blooms. In: Lancelot C, Wassmann P (eds) Ecology of Phaeocystis-dominated ecosystems. J Mar Syst 5:67–79Google Scholar
  117. Whipple SJ, Patten BC, Verity PG (2005) Colony growth and evidence for colony multiplication in Phaeocystis pouchetii (Prymnesiophyceae) isolated from mesocosm blooms. J Plank Res 27:495–501CrossRefGoogle Scholar
  118. Whipple SJ, Patten BC, Verity PG, Nejstgaard JC, Long JD, Anderson JT, Jacobsen A, Larsen A, Martinez-Martinez A, and Borrett, SR (this issue) Gaining integrated understanding of Phaeocystis spp. (Prymnesiophyceae) life cyle through model-driven laboratory and mesocosm studies. BiogeochemistryGoogle Scholar
  119. Zingone A, Chrétiennot-Dinet M-J, Lange M, Medlin L (1999) Morphological and genetic characterization of Phaeocystis cordata and P. Jahnii (Pymnesiophyceae), two new species from the Mediterranean Sea. J Phycol 35:1322–1337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Véronique Rousseau
    • 1
  • Marie-Josèphe Chrétiennot-Dinet
    • 2
  • Anita Jacobsen
    • 3
  • Peter Verity
    • 4
  • Stuart Whipple
    • 4
  1. 1.Ecologie des Systèmes Aquatiques, ULBBrusselsBelgium
  2. 2.Observatoire Biologique de BanyulsUMR 7621, Lab. AragoBanyuls-sur-MerFrance
  3. 3.Department of BiologyUniversity of BergenBergenNorway
  4. 4.Skidaway Institute of OceanographySavannahUSA

Personalised recommendations