Phaeocystis and its interaction with viruses

  • Corina P. D. Brussaard
  • Gunnar Bratbak
  • Anne-Claire Baudoux
  • Piet Ruardij


Over the years, viruses have been shown to be mortality agents for a wide range of phytoplankton species, including species within the genus Phaeocystis (Prymnesiophyceae). With its polymorphic life cycle, its worldwide distribution, and the capacity of several of the Phaeocystis species to form dense blooms, this genus is a key player for our understanding of biogeochemical cycling of elements. This paper provides an overview of what is know to date about the ecological role of viruses in regulating Phaeocystis population dynamics. It explores which variables affect the algal host–virus interactions, and examines the impact of virally induced cell lysis of Phaeocystis on the function and structure of the pelagic food web as well as on the flow of organic carbon and nutrients.


Characteristics Mortality Phaeocystis Phycodnaviridae PgV Viruses 



Phaeocystis globosa virus


Phaeocysis pouchetii virus


Transparent exopolymeric particles


Most probable number


Transmission electron microscopy


Double-stranded DNA


Harmful algal bloom species


Pulsed-field gel electrophoresis


Dimethyl sulfide




Dissolved organic carbon


Dissolved organic matter


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263Google Scholar
  2. Barker GLA, Green JC, Hayes PK, Medlin LK (1994) Preliminary results using the RAPD analysis to screen bloom populations of Emiliania huxleyi (Haptophyta). Sarsia 79:301–306Google Scholar
  3. Baudoux A-C, Brussaard CPD (2005) Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341:80–90CrossRefGoogle Scholar
  4. Baudoux A-C, Noordeloos AAM, Veldhuis MJW, Brussaard CPD (2006) Virally induced mortality of Phaeocystis globosa during a spring bloom in temperate coastal waters. Aquat Microb Ecol 44:201–217Google Scholar
  5. Bergh Ø, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468CrossRefGoogle Scholar
  6. Biddanda BA (1988) Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. II. Microbial metabolism. Mar Ecol Prog Ser 42:89–95Google Scholar
  7. Bratbak G, Jacobsen A, Heldal M (1998) Viral lysis of Phaeocystis pouchetii and bacterial secondary production. Aquat Microb Ecol 16:11–16Google Scholar
  8. Bratbak G, Jacobsen A, Heldal M, Nagasaki K, Thingstad F (1998) Virus production in Phaeocystis pouchetii and its relation to host cell growth and nutrition. Aquat Microb Ecol 16:1–9Google Scholar
  9. Brussaard CP, Marie D, Bratbak G (2000) Flow cytometric detection of viruses. J Virol Methods 85:175–182CrossRefGoogle Scholar
  10. Brussaard CPD (2004) Viral Control of Phytoplankton Populations - a Review. J Eukaryot Microbiol 51:125–138CrossRefGoogle Scholar
  11. Brussaard CPD, Gast GJ, Van Duyl FC, Riegman R (1996) Impact of phytoplankton bloom magnitude on a pelagic microbial food web. Mar Ecol Prog Ser 144:211–221Google Scholar
  12. Brussaard CPD, Kuipers B, Veldhuis MJW (2005a) A mesocosm study of Phaeocystis globosa population dynamics. I. Regulatory role of viruses in bloom control. Harmful Algae 4:859–874CrossRefGoogle Scholar
  13. Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW (2005b) A mesocosm study of Phaeocystis globosa population dynamics. II. Significance for the microbial community. Harmful Algae 4:875–893CrossRefGoogle Scholar
  14. Brussaard CPD, Marie D, Thyrhaug R, Bratbak G (2001) Flow cytometric analysis of phytoplankton viability following viral infection. Aquat Microb Ecol 26:157–166Google Scholar
  15. Brussaard CPD, Riegman R, Noordeloos AAM, Cadée GC, Witte HJ, Kop AJ, Nieuwland G, Van Duyl FC, Bak RPM (1995) Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar Ecol Prog Ser 123:259–271Google Scholar
  16. Brussaard CPD, Short SM, Frederickson CM, Suttle CA (2004) Isolation and phylogenetic analysis of novel viruses infecting the phytoplankter Phaeocystis globosa (Prymnesiophyceae). Appl Environ Microbiol 70:3700–3705CrossRefGoogle Scholar
  17. Brussaard CPD, Thyrhaug R, Marie D, Bratbak G (1999) Flow cytometric analyses of viral infection in two marine phytoplankton species, Micromonas pusilla (Prasinophyceae) and Phaeocystis pouchetii (Prymnesiophyceae). J Phycol 35:941–948CrossRefGoogle Scholar
  18. Cadée GC, Hegeman J (2002) Phytoplankton in the Marsdiep at the end of the 20th century; 30 years monitoring biomass, primary production, and Phaeocystis blooms. J Sea Res 48:97–110CrossRefGoogle Scholar
  19. Castberg T, Thyrhaug R, Larsen A, Sandaa R-A, Heldal M, Van Etten JL, Bratbak G (2002) Isolation and characterization of a virus that infects Emiliania huxleyi (Haptophyta). J Phycol 38:767–774CrossRefGoogle Scholar
  20. Chen F, Suttle CA (1996) Evolutionary relationships among large double-stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology 219:170–178CrossRefGoogle Scholar
  21. Evans CGT, Archer SD, Jacquet S, Wilson AC (2003) Direct measurements of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population. Aquat Microb Ecol 30:207–219Google Scholar
  22. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548CrossRefGoogle Scholar
  23. Gobler CJ, Hutchins DA, Fisher NS, Cosper EM, SanudoWilhelmy SA (1997) Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol Oceanogr 42:1492–1504CrossRefGoogle Scholar
  24. González JM, Suttle CA (1993) Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10Google Scholar
  25. Hamm CE, Simson DA, Merkel R, Smetacek V (1999) Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol Prog Ser 187:101–111Google Scholar
  26. Jacobsen A, Bratbak G, Heldal M (1996) Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J Phycol 32:923–927CrossRefGoogle Scholar
  27. Jacobsen A, Martinez-Martinez J, Verity P, Frischer ME, Sandaa R-A, Larsen A (2005) Are colonies or colonial cells of Phaeocystis pouchetii (prymnesiophyceae) susceptible to virus infection? ASLO Summer Meeting, Santiago de Compostela, Spain, June 19–24Google Scholar
  28. Jacquet S, Bratbak G (2003) Effects of ultraviolet radiation on marine virus-phytoplankton interactions. Fems Microbiol Ecol 44:279–289CrossRefGoogle Scholar
  29. Kapuscinski RB, Mitchell R (1980) Processes controlling virus inactivation in coastal waters. Wat Res 14:363–371CrossRefGoogle Scholar
  30. Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67:283–288CrossRefGoogle Scholar
  31. Larsen A, Castberg T, Sandaa R-A, Brussaard CPD, Egge JK, Heldal M, Paulino A, Thyrhaug R, Van Hannen EJ, Bratbak G (2001) Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar Ecol Prog Ser 221:47–57Google Scholar
  32. Malin G, Wilson WH, Bratbak G, Liss PS, Mann NH (1998) Elevated production of dimethylsulfide resulting from viral infection of cultures of Phaeocystis pouchetii. Limnol Oceanogr 43:1389–1393CrossRefGoogle Scholar
  33. Mari X, Rassoulzadegan F, Brussaard CPD, Wassmann P (2005) Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N- or P-limitation: a controlling factor of the retention/export balance?. Harmful Algae 4:895–914CrossRefGoogle Scholar
  34. Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 65:45–52Google Scholar
  35. Murray AG, Jackson GA (1992) Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar Ecol Prog Ser 89:103–116Google Scholar
  36. Nagasaki K, Tomaru Y, Katanozaka N, Shirai Y, Nishida K, Itakura S, Yamaguchi M (2004) Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom Rhizosolenia setigera. Appl Environ Microbiol 70:704–711CrossRefGoogle Scholar
  37. Noble RT, Fuhrman JA (1997) Virus decay and its causes in coastal waters. Appl Environ Microbiol 63:77–83Google Scholar
  38. Peperzak L (1993) Daily irradiance governs growth rate and colony formation of Phaeocystis (Prymnesiophyceae). J Plankton Res 15:809–821CrossRefGoogle Scholar
  39. Ploug H, Stolte W, Jørgensen BB (1999) Diffusive boundary layers of the colony-forming plankton alga Phaeocystis sp.-implications for nutrient uptake and cellular growth. Limnol Oceanogr 44:1959–1967CrossRefGoogle Scholar
  40. Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62CrossRefGoogle Scholar
  41. Reisser W (1993) Viruses and virus-like particles of freshwater and marine eukaryotic algae - a review. Arch Protistenkd 143:257–265Google Scholar
  42. Ruardij P, Veldhuis MJW, Brussaard CPD (2005) Modelling bloom dynamics of the polymorphic phytoplankter Phaeocystis globosa: impact of grazers and viruses. Harmful Algae 4:941–963CrossRefGoogle Scholar
  43. Rynearson TA, Armbrust EV (2000) DNA fingerprinting reveals extensive diversity in a field population of the centric diatom Ditylum brightwellii. Limnol Oceanogr 45:1329–1340CrossRefGoogle Scholar
  44. Rynearson TA, Armbrust EV (2004) Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). J Phycol 40:34–43CrossRefGoogle Scholar
  45. Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66CrossRefGoogle Scholar
  46. Suttle CA, Chen F (1992) Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol 58:3721–3729Google Scholar
  47. Thyrhaug R, Larsen A, Thingstad FT, Bratbak G (2003) Stable coexistence in marine algal host-virus systems. Mar Ecol Prog Ser 254:27–35Google Scholar
  48. Tomaru Y, Katanozaka N, Nishida K, Shirai Y, Tarutani K, Yamaguchi M, Nagasaki K (2004) Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalga Heterocapsa circularisquama. Aquat Microb Ecol 34:207–218Google Scholar
  49. Van Etten JL (1995) Phycodnaviridae. In: Murphy FA, Fauquet CM, Mayo MA, Jarvis AW, Ghabrial SA, Summers MD, Martelli GP, Bishop DHL (eds) The classification and nomenclature of viruses. Sixth Report of the International Committee on Taxonomy of Viruses Archives of Virology. Springer Verlag, Wien/New YorkGoogle Scholar
  50. Van Etten JL, Lane LC, Meints RH (1991) Viruses and viruslike particles of eukaryotic algae. Microb Rev 55:586–620Google Scholar
  51. Van Wambeke F (1994) Influence of phytoplankton lysis or grazing on bacterial metabolism and trophic relationships. Microb Ecol 27:143–158CrossRefGoogle Scholar
  52. Veldhuis MJW, Brussaard CPD, Noordeloos AAM (2005) Living in a Phaeocystis colony; a way to be a successful algal species. Harmful Algae 4:841–858CrossRefGoogle Scholar
  53. Verity PG, Medlin LK (2003) Observations on colony formation by the cosmopolitan phytoplankton genus Phaeocystis. J Mar Syst 43:153–164CrossRefGoogle Scholar
  54. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181CrossRefGoogle Scholar
  55. Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. BioScience 49:781–788CrossRefGoogle Scholar
  56. Wilson WH, Schroeder DC, Ho J, Canty M (2006) Phylogenetic analysis of PfV-102P, a new virus from the English Channel that infects Phaeocystis globosa. J Mar Biol Ass UK 86:485–490CrossRefGoogle Scholar
  57. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114CrossRefGoogle Scholar
  58. Yan X, Chipman PR, Castberg T, Bratbak G, Baker TS (2005) The marine algal virus PpV01 has an icosahedral capsid wit hT = 219 quasisymmetry. J Virol 79:9236–9243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Corina P. D. Brussaard
    • 1
  • Gunnar Bratbak
    • 2
  • Anne-Claire Baudoux
    • 1
  • Piet Ruardij
    • 1
  1. 1.Department Biological OceanographyRoyal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
  2. 2.Department of BiologyUniversity of BergenBergenNorway

Personalised recommendations