Skip to main content

Physiological Roles Of The Ca2+/Cam-Dependent Protein kinase Cascade In Health and Disease

  • Chapter
Calcium Signalling and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 45))

Abstract

Numerous hormones, growth factors and physiological processes cause a rise in cytosolic Ca2+, which is translated into meaningful cellular responses by interacting with a large number of Ca2+-binding proteins. The Ca2+-binding protein that is most pervasive in mediating these responses is calmodulin (CaM), which acts as a primary receptor for Ca2+ in all eukaryotic cells. In turn, Ca2+/CaM functions as an allosteric activator of a host of enzymatic proteins including a considerable number of protein kinases. The topic of this review is to discuss the physiological roles of a sub-set of these protein kinases which can function in cells as a Ca2+/CaM-dependent kinase signaling cascade. The cascade was originally believed to consist of a CaM kinase kinase that phosphorylates and activates one of two CaM kinases, CaMKI or CaMKIV. The unusual aspect of this cascade is that both the kinase kinase and the kinase require the binding of Ca2+/CaM for activation. More recently, one of the CaM kinase kinases has been found to activate another important enzyme, the AMP-dependent protein kinase so the concept of the CaM kinase cascade must be expanded. A CaM kinase cascade is important for many normal physiological processes that when misregulated can lead to a variety of disease states. These processes include: cell proliferation and apoptosis that may conspire in the genesis of cancer; neuronal growth and function related to brain development, synaptic plasticity as well as memory formation and maintenance; proper function of the immune system including the inflammatory response, activation of T lymphocytes and hematopoietic stem cell maintenance; and the central control of energy balance that, when altered, can lead to obesity and diabetes. Although the study of the CaM-dependent kinase cascades is still in its infancy continued analysis of the pathways regulated by these Ca2+-initiated signaling cascades holds considerable promise for the future of disease-related research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abel, T., Nguyen, P. V., Barad, M., Deuel, T. A., Kandel, E. R. and Bourtchouladze, R., 1997, Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory, Cell, 88, pp 615–26.

    Article  PubMed  CAS  Google Scholar 

  • Agell, N., Bachs, O., Rocamora, N. and Villalonga, P., 2002, Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin, Cell Signal, 14, pp 649–54.

    Article  PubMed  CAS  Google Scholar 

  • Alemany, V., Sanchez-Piris, M., Bachs, O. and Aligue, R., 2002, Cmk2, a novel serine/threonine kinase in fission yeast, FEBS Lett, 524, pp 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Altarejos, J. Y., Taniguchi, M., Clanachan, A. S. and Lopaschuk, G. D., 2005, Myocardial ischemia differentially regulates LKB1 and an alternate 5’-AMP-activated protein kinase kinase, J Biol Chem, 280, pp 183–90.

    PubMed  CAS  Google Scholar 

  • Anderson, K. A. and Means, A. R., 2002, Defective signaling in a subpopulation of CD4(+) T cells in the absence of Ca(2+)/calmodulin-dependent protein kinase IV, Mol Cell Biol, 22, pp 23–9.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, K. A., Means, R. L., Huang, Q. H., Kemp, B. E., Goldstein, E. G., Selbert, M. A., Edelman, A. M., Fremeau, R. T. and Means, A. R., 1998, Components of a calmodulin-dependent protein kinase cascade. Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase beta, J Biol Chem, 273, pp 31880–9.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, K. A., Ribar, T. J., Illario, M. and Means, A. R., 1997, Defective survival and activation of thymocytes in transgenic mice expressing a catalytically inactive form of Ca2+/calmodulin-dependent protein kinase IV, Mol Endocrinol, 11, pp 725–37.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, U., Filipsson, K., Abbott, C. R., Woods, A., Smith, K., Bloom, S. R., Carling, D. and Small, C. J., 2004, AMP-activated protein kinase plays a role in he control of food intake, J Biol Chem, 279, pp 12005–8.

    Article  PubMed  CAS  Google Scholar 

  • Apati, A., Janossy, J., Brozik, A., Bauer, P. I. and Magocsi, M., 2003, Calcium induces cell survival and proliferation through the activation of the MAPK pathway in a human hormone-dependent leukemia cell line, TF-1, J Biol Chem, 278, pp 9235–43.

    Article  PubMed  CAS  Google Scholar 

  • Arad, M., Benson, D. W., Perez-Atayde, A. R., McKenna, W. J., Sparks, E. A., Kanter, R. J., McGarry, K., Seidman, J. G. and Seidman, C. E., 2002, Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy, J Clin Invest, 109, pp 357–62.

    Article  PubMed  CAS  Google Scholar 

  • Barton, K., Muthusamy, N., Chanyangam, M., Fischer, C., Clendenin, C. and Leiden, J. M., 1996, Defective thymocyte proliferation and IL-2 production in transgenic mice expressing dominant-negative form of CREB, Nature, 379, pp 81–5.

    Article  PubMed  CAS  Google Scholar 

  • Beauman, S. R., Campos, B., Kaetzel, M. A. and Dedman, J. R., 2003, CyclinB1 expression is elevated and mitosis is delayed in HeLa cells expressing autonomous CaMKII, Cell Signal, 15, pp 1049–57.

    Article  PubMed  CAS  Google Scholar 

  • Bewick, G. A., Gardiner, J. V., Dhillo, W. S., Kent, A. S., White, N. E., Webster, Z., Ghatei, M. A. and Bloom, S. R., 2005, Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype, Faseb J, 19, pp 1680–2.

    PubMed  CAS  Google Scholar 

  • Bito, H., Deisseroth, K. and Tsien, R., 1996, CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression, Cell, 87, pp 1203–1214.

    Article  PubMed  CAS  Google Scholar 

  • Blaeser, F., Sanders, M. J., Truong, N., Ko, S., Wu, L. J., Wozniak, D. F., Fanselow, M. S., Zhuo, M. and Chatila, T. A., 2006, Long term Memory Deficits in Pavlovian Fear Conditioning in CaMKKalpha Deficient Mice, Mol Cell Biol, pp in press.

    Google Scholar 

  • Bland, M. M., Monroe, R. S. and Ohmstede, C. A., 1994, The cDNA sequence and characterization of the Ca2+/calmodulin-dependent protein kinase-Gr from human brain and thymus, Gene, 142, pp 191–7.

    Article  PubMed  CAS  Google Scholar 

  • Blum, S., Moore, A. N., Adams, F. and Dash, P. K., 1999, A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory, J Neurosci, 19, pp 3535–44.

    PubMed  CAS  Google Scholar 

  • Brodie, C. R., Khaliq, M., Yin, J. C., Brent Clark, H., Orr, H. T. and Boland, L. M., 2004, Overexpression of CREB reduces CRE-mediated transcription: behavioral and cellular analyses in transgenic mice, Mol Cell Neurosci, 25, pp 602–11.

    Article  PubMed  CAS  Google Scholar 

  • Carling, D., 2004, The AMP-activated protein kinase cascade–a unifying system for energy control, Trends Biochem Sci, 29, pp 18–24.

    Article  PubMed  CAS  Google Scholar 

  • Carreira, M. C., Camina, J. P., Smith, R. G. and Casanueva, F. F., 2004, Agonist-specific coupling of growth hormone secretagogue receptor type 1a to different intracellular signaling systems. Role of adenosine, Neuroendocrinology, 79, pp 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Chatila, T., Anderson, K. A., Ho, N. and Means, A. R., 1996, A unique phosphorylation-dependent mechanism for the activation of Ca 2+ /calmodulin-dependent protein kinase type IV/GR, J Biol Chem, 271, pp 21542–21548.

    Article  PubMed  CAS  Google Scholar 

  • Chawla, S., Hardingham, G. E., Quinn, D. R. and Bading, H., 1998, CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV, Science, 281, pp 1505–9.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, P. C., Salt, I. P., Davies, S. P., Hardie, D. G. and Carling, D., 2000, Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding, Biochem J, 346 Pt 3, pp 659–69.

    Article  PubMed  CAS  Google Scholar 

  • Chin, D. and Means, A. R., 2000, Calmodulin: a prototypical calcium sensor, Trends Cell Biol, 10, pp 322–8.

    Article  PubMed  CAS  Google Scholar 

  • Chow, F. A., Anderson, K. A., Noeldner, P. K. and Means, A. R., 2005, The autonomous activity of calcium/calmodulin-dependent protein kinase IV is required for its role in transcription, J Biol Chem, 280, pp 20530–8.

    Article  PubMed  CAS  Google Scholar 

  • Chow, F. A. and Means, A. R., 2006, The Calcium/Calmodulin-Dependent Protein Kinase Cascades, New Comprehensive Biochemistry-Calcium, A Matter of Life or Death, (J. Krebs and M. Michalak), Elsevier B.V.

    Google Scholar 

  • Crabtree, G. R. and Clipstone, N., 1994, Signal transmission between the plasma membrane and nucleus of T lymphocytes, Annual Review of Biochemistry, 63, pp 1045–1083.

    Article  PubMed  CAS  Google Scholar 

  • Cruzalegui, F. H. and Means, A. R., 1993, Biochemical characterization of the multifunctional Ca 2+ /calmodulin-dependent protein kinase type IV expressed in insect cells, J Biol Chem, 268, pp 26171–26178.

    PubMed  CAS  Google Scholar 

  • Dash, P. K., Karl, K. A., Colicos, M. A., Prywes, R. and Kandel, E. R., 1991, cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase, Proc Natl Acad Sci U S A, 88, pp 5061–5.

    Article  PubMed  CAS  Google Scholar 

  • Domen, J., Cheshier, S. H. and Weissman, I. L., 2000, The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential, J Exp Med, 191, pp 253–64.

    Article  PubMed  CAS  Google Scholar 

  • Dussault, I., Fawcett, D., Matthyssen, A., Bader, J. A. and Giguere, V., 1998, Orphan nuclear receptor ROR alpha-deficient mice display the cerebellar defects of staggerer, Mech Dev, 70, pp 147–53.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, A. M., Mitchelhill, K. I., Selbert, M. A., Anderson, K. A., Hook, S. S., Stapleton, D., Goldstein, E. G., Means, A. R. and Kemp, B. E., 1996, Multiple Ca 2+ -calmodulin-dependent protein kinase kinases from rat brain: Purification, regulation by Ca 2+ -calmodulin and partial amino acid sequence, The Journal of Biological Chemistry, 271, pp 10806–10810.

    Article  PubMed  CAS  Google Scholar 

  • Elbing, K., McCartney, R. R. and Schmidt, M. C., 2006, Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae, Biochem J, 393, pp 797–805.

    Article  PubMed  CAS  Google Scholar 

  • Enslen, H., Sun, P., Brickey, D., Soderling, S. H., Klamo, E. and Soderling, T. R., 1994, Characterization of Ca2+/calmodulin-dependent protein kinase IV. Role in transcriptional regulation, J Biol Chem, 269, pp 15520–7.

    PubMed  CAS  Google Scholar 

  • Eto, K., Takahashi, N., Kimura, Y., Masuho, Y., Arai, K., Muramatsu, M. A. and Tokumitsu, H., 1999, Ca(2+)/Calmodulin-dependent protein kinase cascade in Caenorhabditis elegans. Implication in transcriptional activation, J Biol Chem, 274, pp 22556–62.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, H. P., Rajan, J. V., Ha, S. I., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Marquis, S. T. and Chodosh, L. A., 2000, Cloning, characterization, and chromosomal localization of Pnck, a Ca(2+)/calmodulin-dependent protein kinase, Genomics, 63, pp 279–88.

    Article  PubMed  CAS  Google Scholar 

  • Greider, C., Chattopadhyay, A., Parkhurst, C. and Yang, E., 2002, BCL-x(L) and BCL2 delay Myc-induced cell cycle entry through elevation of p27 and inhibition of G1 cyclin-dependent kinases, Oncogene, 21, pp 7765–75.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, B. A., Frankel, W. N., Kerrebrock, A. W., Hawkins, T. L., FitzHugh, W., Kusumi, K., Russell, L. B., Mueller, K. L., van Berkel, V., Birren, B. W., Kruglyak, L. and Lander, E. S., 1996, Disruption of the nuclear hormone receptor RORalpha in staggerer mice, Nature, 379, pp 736–9.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, S. R., O’Donnell, J. B., Jr., Hammet, A., Stapleton, D., Habinowski, S. A., Means, A. R., Kemp, B. E. and Witters, L. A., 2002, AMP-activated protein kinase kinase: detection with recombinant AMPK alpha1 subunit, Biochem Biophys Res Commun, 293, pp 892–8.

    Article  PubMed  CAS  Google Scholar 

  • Hanissian, S. H., Frangakis, M., Bland, M. M., Jawahar, S. and Chatila, T. A., 1993, Expression of Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, in human T lymphocytes. Regulation of kinase activity by T cell receptor signaling, J Biol Chem, 268, pp 20055–63.

    PubMed  CAS  Google Scholar 

  • Hardie, D. G., Carling, D. and Carlson, M., 1998, The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?, Annu Rev Biochem, 67, pp 821–55.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D. G., Scott, J. W., Pan, D. A. and Hudson, E. R., 2003, Management of cellular energy by the AMP-activated protein kinase system, FEBS Lett, 546, pp 113–20.

    Article  PubMed  CAS  Google Scholar 

  • Haribabu, B., Hook, S. S., Selbert, M. A., Goldstein, E. G., Tomhave, E. D., Edelman, A. M., Snyderman, R. and Means, A. R., 1995, Human calcium-calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation byphosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase, Embo J, 14, pp 3679–3686.

    PubMed  CAS  Google Scholar 

  • Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., Alessi, D. R. and Hardie, D. G., 2003, Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade, J Biol, 2, pp 28.

    Article  PubMed  Google Scholar 

  • Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G. and Hardie, D. G., 2005, Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase, Cell Metab, 2, pp 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, S. A., Selbert, M. A., Goldstein, E. G., Edelman, A. M., Carling, D. and Hardie, D. G., 1995, 5’-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms, J Biol Chem, 270, pp 27186–91.

    Article  PubMed  CAS  Google Scholar 

  • Ho, N., Liauw, J. A., Blaeser, F., Wei, F., Hanissian, S., Muglia, L. M., Wozniak, D. F., Nardi, A., Arvin, K. L., Holtzman, D. M., Linden, D. J., Zhuo, M., Muglia, L. J. and Chatila, T. A., 2000, Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice, J Neurosci, 20, pp 6459–72.

    PubMed  CAS  Google Scholar 

  • Hong, S. P., Leiper, F. C., Woods, A., Carling, D. and Carlson, M., 2003, Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases, Proc Natl Acad Sci U S A, 100, pp 8839–43.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S. P., Momcilovic, M. and Carlson, M., 2005, Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast, J Biol Chem, 280, pp 21804–9.

    Article  PubMed  CAS  Google Scholar 

  • Hook, S. S., Kemp, B. E. and Means, A. R., 1999, Peptide specificity determinants at P-7 and P-6 enhance the catalytic efficiency of Ca2+/calmodulin-dependent protein kinase I in the absence of activation loop phosphorylation, J Biol Chem, 274, pp 20215–22.

    Article  PubMed  CAS  Google Scholar 

  • Howe, C. J., LaHair, M. M., Maxwell, J. A., Lee, J. T., Robinson, P. J., Rodriguez-Mora, O., McCubrey, J. A. and Franklin, R. A., 2002, Participation of the calcium/calmodulin-dependent kinases in hydrogen peroxide-induced Ikappa B phosphorylation in human T lymphocytes, J Biol Chem, 277, pp 30469–76.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, L. S., Chen, G. D., Lee, L. S., Chi, C. W., Cheng, J. F. and Chen, J. Y., 2001, Human Ca2+/calmodulin-dependent protein kinase kinase beta gene encodes multiple isoforms that display distinct kinase activity, J Biol Chem, 276, pp 31113–23.

    Article  PubMed  CAS  Google Scholar 

  • Hudmon, A. and Schulman, H., 2002, NEURONAL CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE II: The Role of Structure and Autoregulation in Cellular Function, Annu Rev Biochem, 71, pp 473–510.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, E. R., Pan, D. A., James, J., Lucocq, J. M., Hawley, S. A., Green, K. A., Baba, O., Terashima, T. and Hardie, D. G., 2003, A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias, Curr Biol, 13, pp 861–6.

    Article  PubMed  CAS  Google Scholar 

  • Hurley, R. L., Anderson, K. A., Franzone, J. M., Kemp, B. E., Means, A. R. and Witters, L. A., 2005, The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases, J Biol Chem, 280, pp 29060–6.

    Article  PubMed  CAS  Google Scholar 

  • Impey, S., Fong, A. L., Wang, Y., Cardinaux, J. R., Fass, D. M., Obrietan, K., Wayman, G. A., Storm, D. R., Soderling, T. R. and Goodman, R. H., 2002, Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV, Neuron, 34, pp 235–44.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, Y., Tokumitsu, H., Inuzuka, H., Murata-Hori, M., Hosoya, H. and Kobayashi, R., 2003, Identification and characterization of novel components of Ca2+/calmodulin-dependent protein kinase cascade in HeLa cells, FEBS Lett, 550, pp 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Janumyan, Y. M., Sansam, C. G., Chattopadhyay, A., Cheng, N., Soucie, E. L., Penn, L. Z., Andrews, D., Knudson, C. M. and Yang, E., 2003, Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry, Embo J, 22, pp 5459–70.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, R. and Carlson, M., 1997, The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex, Mol Cell Biol, 17, pp 2099–106.

    PubMed  CAS  Google Scholar 

  • Jones, M. W., Errington, M. L., French, P. J., Fine, A., Bliss, T. V., Garel, S., Charnay, P., Bozon, B., Laroche, S. and Davis, S., 2001, A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories, Nat Neurosci, 4, pp 289–96.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, J. D. and Means, A. R., 2000, Identification and characterization of two Ca2+/CaM-dependent protein kinases required for normal nuclear division in Aspergillus nidulans, J Biol Chem, 275, pp 38230–8.

    Article  PubMed  CAS  Google Scholar 

  • Kahl, C. R. and Means, A. R., 2003, Regulation of cell cycle progression by calcium/calmodulin-dependent pathways, Endocr Rev, 24, pp 719–36.

    Article  PubMed  CAS  Google Scholar 

  • Kahl, C. R. and Means, A. R., 2004, Regulation of cyclin D1/Cdk4 complexes by calcium/calmodulin-dependent protein kinase I, J Biol Chem, 279, pp 15411–9.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, B. B., Alquier, T., Carling, D. and Hardie, D. G., 2005, AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism, Cell Metab, 1, pp 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E. R., 2001, The molecular biology of memory storage: a dialog between genes and synapses, Biosci Rep, 21, pp 565–611.

    Article  PubMed  CAS  Google Scholar 

  • Kane CD, M. A., 2000, Activation of orphan receptor-mediated transcription by Ca(2+) /calmodulin-dependent protein kinase IV, EMBO J., 19, pp 691–701.

    Article  PubMed  Google Scholar 

  • Kang, H., Sun, L. D., Atkins, C. M., Soderling, T. R., Wilson, M. A. and Tonegawa, S., 2001, An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory, Cell, 106, pp 771–83.

    Article  PubMed  CAS  Google Scholar 

  • Kelleher, R. J., 3rd, Govindarajan, A., Jung, H. Y., Kang, H. and Tonegawa, S., 2004, Translational control by MAPK signaling in long-term synaptic plasticity and memory, Cell, 116, pp 467–79.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, B. E., 2004, Bateman domains and adenosine derivatives form a binding contract, J Clin Invest, 113, pp 182–4.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, B. E., Mitchelhill, K. I., Stapleton, D., Michell, B. J., Chen, Z. P. and Witters, L. A., 1999, Dealing with energy demand: the AMP-activated protein kinase, Trends Biochem Sci, 24, pp 22–5.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, B. E., Stapleton, D., Campbell, D. J., Chen, Z. P., Murthy, S., Walter, M., Gupta, A., Adams, J. J., Katsis, F., van Denderen, B., Jennings, I. G., Iseli, T., Michell, B. J. and Witters, L. A., 2003, AMP-activated protein kinase, super metabolic regulator, Biochem Soc Trans, 31, pp 162–8.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, Y., Corcoran, E. E., Eto, K., Gengyo-Ando, K., Muramatsu, M. A., Kobayashi, R., Freedman, J. H., Mitani, S., Hagiwara, M., Means, A. R. and Tokumitsu, H., 2002, A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans, EMBO Rep, 3, pp 962–6.

    Article  PubMed  CAS  Google Scholar 

  • Kitani, T., Okuno, S. and Fujisawa, H., 1997, Molecular cloning of Ca2+/calmodulin-dependent protein kinase kinase beta, J Biochem (Tokyo), 122, pp 243–50.

    CAS  Google Scholar 

  • Kitsos, C. M., Sankar, U., Illario, M., Colomer-Font, J. M., Duncan, A. W., Ribar, T. J., Reya, T. and Means, A. R., 2005, Calmodulin-dependent protein kinase IV regulates hematopoietic stem cell maintenance, J Biol Chem, 280, pp 33101–8.

    Article  PubMed  CAS  Google Scholar 

  • Klee, C. B. and Means, A. R., 2002, Keeping up with calcium: conference on calcium-binding proteins and calcium function in health and disease, EMBO Rep, 3, pp 823–7.

    Article  PubMed  CAS  Google Scholar 

  • Knott, J. G., Gardner, A. J., Madgwick, S., Jones, K. T., Williams, C. J. and Schultz, R. M., 2006, Calmodulin-dependent protein kinase II triggers mouse egg activation and embryo development in the absence of Ca2+ oscillations, Dev Biol, 296, pp 388–95.

    Article  PubMed  CAS  Google Scholar 

  • Kung, A. L., Rebel, V. I., Bronson, R. T., Ch’ng, L. E., Sieff, C. A., Livingston, D. M. and Yao, T. P., 2000, Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP, Genes Dev, 14, pp 272–7.

    PubMed  CAS  Google Scholar 

  • Lemrow, S. M., Anderson, K. A., Joseph, J. D., Ribar, T. J., Noeldner, P. K. and Means, A. R., 2004, Catalytic activity is required for calcium/calmodulin-dependent protein kinase IV to enter the nucleus, J Biol Chem, 279, pp 11664–71.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J. and Maller, J. L., 2005, Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor, Curr Biol, 15, pp 1458–68.

    Article  PubMed  CAS  Google Scholar 

  • Lonze, B. E. and Ginty, D. D., 2002, Function and regulation of CREB family transcription factors in the nervous system, Neuron, 35, pp 605–23.

    Article  PubMed  CAS  Google Scholar 

  • Lorca, T., Cruzalegui, F. H., Fesquet, D., Cavadore, J.-C., Mery, J., Means, A. R. and Doree, M., 1993, Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs, Nature, 366, pp 270–273.

    Article  PubMed  CAS  Google Scholar 

  • Loseth, O. P., de Lecea, L., Calbet, M., Danielson, P. E., Gautvik, V., Hovring, P. I., Walaas, S. I. and Gautvik, K. M., 2000, Developmental regulation of two isoforms of Ca(2+)calmodulin-dependent protein kinase I beta in rat brain, Brain Res, 869, pp 137–45.

    Article  PubMed  CAS  Google Scholar 

  • Marie, H., Morishita, W., Yu, X., Calakos, N. and Malenka, R. C., 2005, Generation of silent synapses by acute in vivo expression of CaMKIV and CREB, Neuron, 45, pp 741–52.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, D. J., Hollopeter, G., Kafer, K. E. and Palmiter, R. D., 1998, Role of the Y5 neuropeptide Y receptor in feeding and obesity, Nat Med, 4, pp 718–21.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R. P., Guthrie, C. R., Wailes, L. M., Zhao, X., Means, A. R. and McKnight, G. S., 1994, Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression., Mol Cell Biol, 14, pp 6107–6116.

    PubMed  CAS  Google Scholar 

  • Means, A., 2000, Regulatory cascades involving calmodulin-dependent protein kinases, Mol. Endocrinol., 14, pp 4–13.

    Article  PubMed  CAS  Google Scholar 

  • Means, A. R., Cruzalegui, F., LeMagueresse, B., Needleman, D. S., Slaughter, G. R. and Ono, T., 1991, A novel Ca 2+ /calmodulin-dependent protein kinase and a male germ cell-specific calmodulin-binding protein are derived from the same gene, Mol Cell Biol, 11, pp 3960–3971.

    PubMed  CAS  Google Scholar 

  • Melia, K. R., Ryabinin, A. E., Schroeder, R., Bloom, F. E. and Wilson, M. C., 1994, Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress, J Neurosci, 14, pp 5929–38.

    PubMed  CAS  Google Scholar 

  • Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y. B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferre, P., Birnbaum, M. J., Stuck, B. J. and Kahn, B. B., 2004, AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus, Nature, 428, pp 569–74.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, K., Ris, L., Sanchez-Capelo, A., Godaux, E. and Giese, K. P., 2006, Ca2+/Calmodulin Kinase Kinase alpha Is Dispensable for Brain Development But Is Required for Distinct Memories in Male, Though Not in Female, Mice, Mol Cell Biol, pp in press.

    Google Scholar 

  • Moffet, D. F., Moffet, S. B. and Schauf, C. L., 1993, Human Physiology, (J. M. Smith), Mosby-Year Book, Inc, St. Louis, MI.

    Google Scholar 

  • Momcilovic, M., Hong, S. P. and Carlson, M., 2006, Mammalian TAK1 Activates Snf1 Protein Kinase in Yeast and Phosphorylates AMP-activated Protein Kinase in Vitro, J Biol Chem, 281, pp 25336–43.

    Article  PubMed  CAS  Google Scholar 

  • Naito, Y., Watanabe, Y., Yokokura, H., Sugita, R., Nishio, M. and Hidaka, H., 1997, Isoform-specific activation and structural diversity of calmodulin kinase I, J Biol Chem, 272, pp 32704–8.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, Y., Okuno, S., Kitani, T., Otake, K., Sato, F. and Fujisawa, H., 2001, Immunohistochemical localization of Ca(2+)/calmodulin-dependent protein kinase kinase beta in the rat central nervous system, Neurosci Res, 39, pp 175–88.

    Article  PubMed  CAS  Google Scholar 

  • Nath, N., McCartney, R. R. and Schmidt, M. C., 2003, Yeast Pak1 kinase associates with and activates Snf1, Mol Cell Biol, 23, pp 3909–17.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, H., Sakagami, H., Uezu, A., Fukunaga, K., Watanabe, M. and Kondo, H., 2003, Cloning, characterization and expression of two alternatively splicing isoforms of Ca2+/calmodulin-dependent protein kinase I gamma in the rat brain, J Neurochem, 85, pp 1216–27.

    Article  PubMed  CAS  Google Scholar 

  • Ohmstede, C. A., Jensen, K. F. and Sahyoun, N. E., 1989, Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase, J Biol Chem, 264, pp 5866–75.

    PubMed  CAS  Google Scholar 

  • Okuno, S., Kitani, T., Matsuzaki, H., Konishi, H., Kikkawa, U. and Fujisawa, H., 2000, Studies on the phosphorylation of protein kinase B by Ca(2+)/calmodulin-dependent protein kinases, J Biochem (Tokyo), 127, pp 965–70.

    CAS  Google Scholar 

  • Ono, T., Slaughter, G. R., Cook, R. G. and Means, A. R., 1989, Molecular cloning sequence and distribution of rat calspermin, a high affinity calmodulin-binding protein, The Journal of Biological Chemistry, 264, pp 2081–2087.

    PubMed  CAS  Google Scholar 

  • Pan, F., Means, A. R. and Liu, J. O., 2005, Calmodulin-dependent protein kinase IV regulates nuclear export of Cabin1 during T-cell activation, Embo J, 24, pp 2104–13.

    Article  PubMed  CAS  Google Scholar 

  • Park, I. K. and Soderling, T. R., 1995, Activation of Ca2+/calmodulin-dependent protein kinase (CaM-kinase) IV by CaM-kinase kinase in Jurkat T lymphocytes, J Biol Chem, 270, pp 30464–9.

    Article  PubMed  CAS  Google Scholar 

  • Patel, R., Holt, M., Philipova, R., Moss, S., Schulman, H., Hidaka, H. and Whitaker, M., 1999, Calcium/calmodulin-dependent phosphorylation and activation of human Cdc25-C at the G2/M phase transition in HeLa cells, J Biol Chem, 274, pp 7958–68.

    Article  PubMed  CAS  Google Scholar 

  • Pedrazzini, T., Seydoux, J., Kunstner, P., Aubert, J. F., Grouzmann, E., Beermann, F. and Brunner, H. R., 1998, Cardiovascular response, feeding behavior and locomotor activity in mice lacking the NPY Y1 receptor, Nat Med, 4, pp 722–6.

    Article  PubMed  CAS  Google Scholar 

  • Peters, M., Mizuno, K., Ris, L., Angelo, M., Godaux, E. and Giese, K. P., 2003, Loss of Ca2+/calmodulin kinase kinase beta affects the formation of some, but not all, types of hippocampus-dependent long-term memory, J Neurosci, 23, pp 9752–60.

    PubMed  CAS  Google Scholar 

  • Picciotto, M., Czernik, A. and Nairn, A., 1993, Calcium/calmodulin-dependent protein kinase I. cDNA cloning and identification of autophosphorylation site., J. Biol. Chem., 268, pp 26512–26521.

    PubMed  CAS  Google Scholar 

  • Picciotto, M., Zoli, M., Bertuzzi, G. and AC., N., 1995, Immunochemical localization of calcium/calmodulin-dependent protein kinase I, Synapse, 20, pp 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Planas-Silva, M. D. and Means, A. R., 1992, Expression of a constitutive form of calcium/calmodulin dependent protein kinase II leads to arrest of the cell cycle in G 2, EMBO Journal, 11, pp 507–517.

    PubMed  CAS  Google Scholar 

  • Raman, V., Blaeser, F., Ho, N., Engle, D. L., Williams, C. B. and Chatila, T. A., 2001, Requirement for Ca2+/calmodulin-dependent kinase type IV/Gr in setting the thymocyte selection threshold, J Immunol, 167, pp 6270–8.

    PubMed  CAS  Google Scholar 

  • Rasmussen, C. D., 2000, Cloning of a calmodulin kinase I homologue from Schizosaccharomyces pombe, J Biol Chem, 275, pp 685–90.

    Article  PubMed  CAS  Google Scholar 

  • Rebel, V. I., Kung, A. L., Tanner, E. A., Yang, H., Bronson, R. T. and Livingston, D. M., 2002, Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal, Proc Natl Acad Sci U S A, 99, pp 14789–94.

    Article  PubMed  CAS  Google Scholar 

  • Ribar, T. J., Rodriguiz, R. M., Khiroug, L., Wetsel, W. C., Augustine, G. J. and Means, A. R., 2000, Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice, J Neurosci, 20, pp RC107.

    PubMed  CAS  Google Scholar 

  • Rina, S., Jusuf, A. A., Sakagami, H., Kikkawa, S., Kondo, H., Minami, Y. and Terashima, T., 2001, Distribution of Ca(2+)/calmodulin-dependent protein kinase I beta 2 in the central nervous system of the rat, Brain Res, 911, pp 1–11.

    Article  Google Scholar 

  • Rodriguez-Mora, O., LaHair, M. M., Howe, C. J., McCubrey, J. A. and Franklin, R. A., 2005, Calcium/calmodulin-dependent protein kinases as potential targets in cancer therapy, Expert Opin Ther Targets, 9, pp 791–808.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Mora, O. G., LaHair, M. M., McCubrey, J. A. and Franklin, R. A., 2005, Calcium/calmodulin-dependent kinase I and calcium/calmodulin-dependent kinase kinase participate in the control of cell cycle progression in MCF-7 human breast cancer cells, Cancer Res, 65, pp 5408–16.

    Article  PubMed  CAS  Google Scholar 

  • Rutter, G. A., Da Silva Xavier, G. and Leclerc, I., 2003, Roles of 5’-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis, Biochem J, 375, pp 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, Y., Hardman, J. G. and Wells, J. N., 1985, Differences in the association of calmodulin with cyclic nucleotide phosphodiesterase in relaxed and contracted arterial strips, Biochemistry, 24, pp 1613–1618.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, Y., Yamamoto, H., Fukunaga, K., Matsukado, Y. and Miyamoto, E., 1987, Inactivation and reactivation of the multifunctional calmodulin-dependent protein kinase from brain by autophosphorylation and dephosphorylation: Involvement of protein phosphatases from brain, Journal of Neurochemistry, 49, pp 1286–1292.

    Article  PubMed  CAS  Google Scholar 

  • Sakagami, H., Kamata, A., Nishimura, H., Kasahara, J., Owada, Y., Takeuchi, Y., Watanabe, M., Fukunaga, K. and Kondo, H., 2005, Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons, Eur J Neurosci, 22, pp 2697–707.

    Article  PubMed  Google Scholar 

  • Sakagami, H. and Kondo, H., 1993, Cloning and sequencing of a gene encoding the beta polypeptide of Ca2+/calmodulin-dependent protein kinase IV and its expression confined to the mature cerebellar granule cells, Brain Res Mol Brain Res, 19, pp 215–8.

    Article  PubMed  CAS  Google Scholar 

  • Sakagami, H., Umemiya, M., Kobayashi, T., Saito, S. and Kondo, H., 1999, Immunological evidence that the beta isoform of Ca2+/calmodulin-dependent protein kinase IV is a cerebellar granule cell-specific product of the CaM kinase IV gene, Eur J Neurosci, 11, pp 2531–6.

    Article  PubMed  CAS  Google Scholar 

  • Sakagami, H., Umemiya, M., Saito, S. and Kondo, H., 2000, Distinct immunohistochemical localization of two isoforms of Ca2+/calmodulin-dependent protein kinase kinases in the adult rat brain, Eur J Neurosci, 12, pp 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Sakagami, H., Watanabe, M. and Kondo, H., 1992, Gene expression of Ca2+/calmodulin-dependent protein kinase of the cerebellar granule cell type or type IV in the mature and developing rat brain, Brain Res Mol Brain Res, 16, pp 20–8.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, K., McCarthy, A., Smith, D., Green, K. A., Grahame Hardie, D., Ashworth, A. and Alessi, D. R., 2005, Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, Embo J, 24, pp 1810–20.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, K., Zarrinpashneh, E., Budas, G. R., Pouleur, A. C., Dutta, A., Prescott, A. R., Vanoverschelde, J. L., Ashworth, A., Jovanovic, A., Alessi, D. R. and Bertrand, L., 2006, Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1, Am J Physiol Endocrinol Metab, 290, pp E780–8.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Piris, M., Posas, F., Alemany, V., Winge, I., Hidalgo, E., Bachs, O. and Aligue, R., 2002, The serine/threonine kinase Cmk2 is required for oxidative stress response in fission yeast, J Biol Chem, 277, pp 17722–7.

    Article  PubMed  CAS  Google Scholar 

  • Satterlee, J. S., Ryu, W. S. and Sengupta, P., 2004, The CMK-1 CaMKI and the TAX-4 Cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans, Curr Biol, 14, pp 62–8.

    Article  PubMed  CAS  Google Scholar 

  • Sawamura, Y., Sakagami, H. and Kondo, H., 1996, Localization of mRNA for Ca2+/calmodulin-dependent protein kinase I in the brain of developing and mature rats, Brain Res, 706, pp 259–66.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, J. M., Guire, E. S., Saneyoshi, T. and Soderling, T. R., 2005, Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation, J Neurosci, 25, pp 1281–90.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, J. M., Wayman, G. A., Nozaki, N. and Soderling, T. R., 2004, Calcium activation of ERK mediated by calmodulin kinase I, J Biol Chem, 279, pp 24064–72.

    Article  PubMed  CAS  Google Scholar 

  • Sebzda, E., Mariathasan, S., Ohteki, T., Jones, R., Bachmann, M. F. and Ohashi, P. S., 1999, Selection of the T cell repertoire, Annu Rev Immunol, 17, pp 829–74.

    Article  PubMed  CAS  Google Scholar 

  • See, V., Boutillier, A. L., Bito, H. and Loeffler, J. P., 2001, Calcium/calmodulin-dependent protein kinase type IV (CaMKIV) inhibits apoptosis induced by potassium deprivation in cerebellar granule neurons, Faseb J, 15, pp 134–144.

    Article  PubMed  CAS  Google Scholar 

  • Segal-Lieberman, G., Trombly, D. J., Juthani, V., Wang, X. and Maratos-Flier, E., 2003, NPY ablation in C57BL/6 mice leads to mild obesity and to an impaired refeeding response to fasting, Am J Physiol Endocrinol Metab, 284, pp E1131–9.

    PubMed  CAS  Google Scholar 

  • Sejnowski T, C. S., and Stanton P, 1989, Induction of synaptic plasticity by hebbian covariance in the hippocampus, The computing neuron, (M. C. Durbin R, and Mitchison G), Addison-Wesley Publishers, Ltd, Reading, Massachusets.

    Google Scholar 

  • Selbert, M. A., Anderson, K. A., Huang, Q., Goldstein, E. G., Means, A. R. and Edelman, A. M., 1995, Phosphorylation and activation of Ca 2+ -calmodulin-dependent protein kinase IV by Ca 2+ -calmodulin-dependent protein kinase Ia kinase: Phosphorylation of threonine 196 is essential for activation, The Journal of Biological Chemistry, 270, pp 17616–17621.

    Article  PubMed  CAS  Google Scholar 

  • Selcher, J. C., Atkins, C. M., Trzaskos, J. M., Paylor, R. and Sweatt, J. D., 1999, A necessity for MAP kinase activation in mammalian spatial learning, Learn Mem, 6, pp 478–90.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M. and Cantley, L. C., 2005, The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin, Science, 310, pp 1642–6.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, M., Thompson, M. A. and Greenberg, M. E., 1991, CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases, Science, 252, pp 1427–30.

    Article  PubMed  CAS  Google Scholar 

  • Shieh, P. B. and Ghosh, A., 1999, Molecular mechanisms underlying activity-dependent regulation of BDNF expression, J Neurobiol, 41, pp 127–34.

    Article  PubMed  CAS  Google Scholar 

  • Shieh, P. B., Hu, S. C., Bobb, K., Timmusk, T. and Ghosh, A., 1998, Identification of a signaling pathway involved in calcium regulation of BDNF expression, Neuron, 20, pp 727–40.

    Article  PubMed  CAS  Google Scholar 

  • Silva, A. J. and Giese, K. P., 1994, Plastic genes are in!, Curr Opin Neurobiol, 4, pp 413–20.

    Article  PubMed  CAS  Google Scholar 

  • Soderling, T. R., 1999, The Ca-calmodulin-dependent protein kinase cascade, Trends Biochem Sci, 24, pp 232–6.

    Article  PubMed  CAS  Google Scholar 

  • Steinmayr, M., Andre, E., Conquet, F., Rondi-Reig, L., Delhaye-Bouchaud, N., Auclair, N., Daniel, H., Crepel, F., Mariani, J., Sotelo, C. and Becker-Andre, M., 1998, staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice, Proc Natl Acad Sci U S A, 95, pp 3960–5.

    Article  PubMed  CAS  Google Scholar 

  • Sumi, M., Kiuchi, K., Ishikawa, T., Ishii, A., Hagiwara, M., Nagatsu, T. and Hidaka, H., 1991, The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells, Biochem Biophys Res Commun, 181, pp 968–75.

    Article  PubMed  CAS  Google Scholar 

  • Sun, P., Enslen, H., Myung, P. S. and Maurer, R. A., 1994, Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity, Genes Dev, 8, pp 2527–39.

    Article  PubMed  CAS  Google Scholar 

  • Sun, P., Lou, L. and Maurer, R. A., 1996, Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II, and IV, J Biol Chem, 271, pp 3066–73.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Z., Sassone-Corsi, P. and Means, A. R., 1995, Calspermin gene transcription is regulated by two cyclic AMP response elements contained in an alternative promoter in the calmodulin kinase IV gene, Molecular and Cellular Biology, 15, pp 561–571.

    PubMed  CAS  Google Scholar 

  • Sweatt, J. D., 2004, Mitogen-activated protein kinases in synaptic plasticity and memory, Curr Opin Neurobiol, 14, pp 311–7.

    Article  PubMed  CAS  Google Scholar 

  • Takemoto-Kimura, S., Terai, H., Takamoto, M., Ohmae, S., Kikumura, S., Segi, E., Arakawa, Y., Furuyashiki, T., Narumiya, S. and Bito, H., 2003, Molecular cloning and characterization of CLICK-III/CaMKIgamma, a novel membrane-anchored neuronal Ca2+/calmodulin-dependent protein kinase (CaMK), J Biol Chem, 278, pp 18597–605.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, N., Tai, Y., Sugimoto, K., Kobayashi, R., Konishi, R., Nishioka, M., Masaki, T., Nagahata, S. and Tokuda, M., 2000, Enhanced expression and activation of Ca(2+)/calmodulin-dependent protein kinase IV in hepatocellular carcinoma, Cancer, 89, pp 1910–6.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G. M. and Huganir, R. L., 2004, MAPK cascade signalling and synaptic plasticity, Nat Rev Neurosci, 5, pp 173–83.

    Article  PubMed  CAS  Google Scholar 

  • Tokumitsu, H., Chijiwa, T., Hagiwara, M., Mizutani, A., Terasawa, M. and Hidaka, H., 1990, KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II, J Biol Chem, 265, pp 4315–20.

    PubMed  CAS  Google Scholar 

  • Tokumitsu, H., Enslen, H. and Soderling, T. R., 1995, Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase, J Biol Chem, 270, pp 19320–4.

    Article  PubMed  CAS  Google Scholar 

  • Tokumitsu, H., Inuzuka, H., Ishikawa, Y., Ikeda, M., Saji, I. and Kobayashi, R., 2002, STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase, J Biol Chem, 277, pp 15813–8.

    Article  PubMed  CAS  Google Scholar 

  • Tokumitsu, H. and Soderling, T. R., 1996, Requirements for calcium and calmodulin in the calmodulin kinase activation cascade, J Biol Chem, 271, pp 5617–22.

    Article  PubMed  CAS  Google Scholar 

  • Tokumitsu, H., Takahashi, N., Eto, K., Yano, S., Soderling, T. R. and Muramatsu, M., 1999, Substrate recognition by Ca2+/Calmodulin-dependent protein kinase kinase. Role of the arg-pro-rich insert domain, J Biol Chem, 274, pp 15803–10.

    Article  PubMed  CAS  Google Scholar 

  • Tombes, R. M. and Krystal, G. W., 1997, Identification of novel human tumor cell-specific CaMK-II variants, Biochim Biophys Acta, 1355, pp 281–92.

    Article  PubMed  CAS  Google Scholar 

  • Tremper-Wells, B. and Vallano, M. L., 2005, Nuclear calpain regulates Ca2+-dependent signaling via proteolysis of nuclear Ca2+/calmodulin-dependent protein kinase type IV in cultured neurons, J Biol Chem, 280, pp 2165–75.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, T., Sakagami, H., Abe, K., Oishi, I., Maruo, A., Kondo, H., Terashima, T., Ichihashi, M., Yamamura, H. and Minami, Y., 1999, Distribution and intracellular localization of a mouse homologue of Ca2+/calmodulin-dependent protein kinase Ibeta2 in the nervous system, J Neurochem, 73, pp 2119–29.

    PubMed  CAS  Google Scholar 

  • Vaisse, C., Halaas, J. L., Horvath, C. M., Darnell, J. E., Jr., Stoffel, M. and Friedman, J. M., 1996, Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice, Nat Genet, 14, pp 95–7.

    Article  PubMed  CAS  Google Scholar 

  • Verploegen, S., Lammers, J. W., Koenderman, L. and Coffer, P. J., 2000, Identification and characterization of CKLiK, a novel granulocyte Ca(++)/calmodulin-dependent kinase, Blood, 96, pp 3215–23.

    PubMed  CAS  Google Scholar 

  • Vinet, J., Carra, S., Blom, J. M., Harvey, M., Brunello, N., Barden, N. and Tascedda, F., 2003, Cloning of mouse Ca2+/calmodulin-dependent protein kinase kinase beta (CaMKKbeta) and characterization of CaMKKbeta and CaMKKalpha distribution in the adult mouse brain, Brain Res Mol Brain Res, 111, pp 216–21.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. L., Ribar, T. J. and Means, A. R., 2001, Expression of Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) messenger RNA during murine embryogenesis, Cell Growth Differ, 12, pp 351–361.

    Google Scholar 

  • Wayman, G. A., Impey, S., Marks, D., Saneyoshi, T., Grant, W. F., Derkach, V. and Soderling, T. R., 2006, Activity-Dependent Dendritic Arborization Mediated by CaM-Kinase I Activation and Enhanced CREB-Dependent Transcription of Wnt-2, Neuron, 50, pp 897–909.

    Article  PubMed  CAS  Google Scholar 

  • Wayman, G. A., Kaech, S., Grant, W. F., Davare, M., Impey, S., Tokumitsu, H., Nozaki, N., Banker, G. and Soderling, T. R., 2004, Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I, J Neurosci, 24, pp 3786–94.

    Article  PubMed  CAS  Google Scholar 

  • Wei, F., Qiu, C. S., Liauw, J., Robinson, D. A., Ho, N., Chatila, T. and Zhuo, M., 2002, Calcium calmodulin-dependent protein kinase IV is required for fear memory, Nat Neurosci, 5, pp 573–9.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B. E., Mochon, E. and Boxer, L. M., 1996, Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis, Mol Cell Biol, 16, pp 5546–56.

    PubMed  CAS  Google Scholar 

  • Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R., Carlson, M. and Carling, D., 2005, Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metab, 2, pp 21–33.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G. Y., Deisseroth, K. and Tsien, R. W., 2001, Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway, Proc Natl Acad Sci U S A, 98, pp 2808–13.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J. Y., Gonzalez-Robayna, I. J., Richards, J. S. and Means, A. R., 2000, Female fertility is reduced in mice lacking Ca2+/calmodulin-dependent protein kinase IV, Endocrinology, 141, pp 4777–83.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J. Y. and Means, A. R., 2000, Ca(2+)/calmodulin-dependent protein kinase IV is expressed in spermatids and targeted to chromatin and the nuclear matrix, J Biol Chem, 275, pp 7994–9.

    Article  PubMed  CAS  Google Scholar 

  • Yano, S., Tokumitsu, H. and Soderling, T. R., 1998, Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway, Nature, 396, pp 584–7.

    Article  PubMed  CAS  Google Scholar 

  • Yokokura, H., Picciotto, M. R., Nairn, A. C. and Hidaka, H., 1995, The regulatory region of calcium/calmodulin-dependent protein kinase I contains closely associated autoinhibitory and calmodulin-binding domains, J Biol Chem, 270, pp 23851–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Odom, D. T., Koo, S. H., Conkright, M. D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., Jacobsen, E., Kadam, S., Ecker, J. R., Emerson, B., Hogenesch, J. B., Unterman, T., Young, R. A. and Montminy, M., 2005, Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues, Proc Natl Acad Sci USA, 102, pp 4459–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

COLOMER, J., MEANS, A. (2007). Physiological Roles Of The Ca2+/Cam-Dependent Protein kinase Cascade In Health and Disease. In: Carafoli, E., Brini, M. (eds) Calcium Signalling and Disease. Subcellular Biochemistry, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6191-2_7

Download citation

Publish with us

Policies and ethics