Calpains and Human Disease

  • I. BERTIPAGLIA
  • E. CARAFOLI
Part of the Subcellular Biochemistry book series (SCBI, volume 45)

Calpains, particularly conventional dimeric calpains, have claimed to be involved in the cell degeneration processes that characterize numerous disease conditions linked to dysfunctions of cellular Ca 2+ homeostasis. The evidence supporting their involvement has traditionally been indirect and circumstantial, but recent work has added more solid evidence supporting the role of ubiquitous dimeric calpains in the process of neurodegeneration. The only disease condition in which a calpain defect has been conclusively involved concerns an atypical monomeric calpain: the muscle specific calpain-3, also known as p94. Inactivating defects in its gene cause a muscular dystrophy termed LGMD-2A. The molecular mechanism by which the absence of the proteolytic activity of calpain-3 causes the dystrophic process is unknown. Another atypical calpain, which has been characterized recently as a Ca 2+ - dependent protease, calpain 10, appears to be involved in the etiology of type 2 diabetes. The involvement has been inferred essentially from genetic evidence. Also in the case of type 2 diabetes the molecular mechanisms that could link the disease to calpain 10 are unknown

Keywords

Calpain-3 muscular dystrophy type 2 diabetes calpain 10 neurodegeneration protease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, A., Toro, R., Caceres, A., Maccioni, R.B., 1999, Inhibition of tau phosphorylating protein kinase cdk5 prevents β amyloid-induced neuronal death, FEBS Lett., 459, 421–426PubMedCrossRefGoogle Scholar
  2. Anderson, L.V.B., Harrison, L.V.B., Pogue, R., Vafiadaki, E., Pollitt, C., Davison, K., Moss, J.A., Keers, S., Pyle, A., and Shaw, P.J., et al., 2000, Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies), Neuromuscul. Dis., 10, 553–559CrossRefGoogle Scholar
  3. Arrington, D., Van Vleet, T., Schnellmann, R., 2006, Calpain 10: A Mitochondrial Calpain and its Role in Calcium-induced Mitochondrial Dysfunction, Am. J. Physiol.Cell. Physiol., Baghdiguian, S., Martin, M., Richard, I., Pons, F., Astier, C., Bourg, N., Hay, R.T., Chemaly, R., Halaby, G., Loiselet, J., Anderson, L.V., Lopez de Munain, A., Fardeau, M., Mangeat, P., Beckmann, J.S., Lefranc, G., 1999, Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkappaB alpha/NF-kappaB pathway in limb-girdle muscular dystrophy type 2A, Nat Med., 5, 503–11Google Scholar
  4. Baier, L.J., Permana, P.A., Yang X., Pratley, R.E., Hanson, R.L., Shen, G.Q., Mott, D., Knowler, W.C., Cox, N.J., Horikawa, Y., Oda, N., Bell, G.I., Bogardus, C., 2000, A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance, J. Clin. Invest., 106, 69–73CrossRefGoogle Scholar
  5. Baki, A., Tompa, P., Molnár, O., Friedrich, P., 1995, Autolysis parallels activation of μ -calpain, Biochem. J., 318, 897–901Google Scholar
  6. Banik, N.L., Matzelle, D., Terry, E., Hogan, E.L., 1997, A new mechanism of methylprednisolone and other corticosteroids action demonstrated in vitro: inhibition of a proteinase (calpain) prevents myelin and cytoskeletal protein degradation, Brain. Res.; 748,,205–210Google Scholar
  7. Bano, D., Young, K.W., Guerin, C.J., LeFeuvre, R., Rothwell, N.J. ,Naldini, L., Rizzuto, R., Carafoli, E. and Nicotera, P., 2005, Cleavage of the plasma membrane Na(+)/Ca(2+) exchanger in excitotoxicity, Cell ,120, 275–285PubMedCrossRefGoogle Scholar
  8. Bansal, D., and Campbell, K.P., 2004, Dysferlin and the plasma membrane repair in muscular dystrophy, Trends Cell Biol., 14, 206–213PubMedCrossRefGoogle Scholar
  9. Bashir, R., Britton, S., Strachan, T., Keers, S., Vafiadaki, E., Lako, M., Richard, I., Marchand, S., Bourg, N., and Argov, Z., et al., 1998, A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B, Nat. Genet., 20, 37–42PubMedCrossRefGoogle Scholar
  10. Beckmann, J.S., Richard, I., Hillaire, D., Broux, O., Antignac, C., Bois, E., Cann, H., Cottingham, R.W., Feingold, N., and Feingold, J., et al.,1991, A gene for limb-girdle muscular dystrophy maps to chromosome 15 by linkage , C. R. Acad. Sci. III, 312, 141–148PubMedGoogle Scholar
  11. Besse, S., Delcayre, C., Chevalier, B., Hardouin, S., Heymes, C., Bourgeois, F., Moalic, J.M., Swynghedauw, B., 1994, Is the senescent heart overloaded and already failing, Cardiovasc. Drugs Ther., 8, 581–587PubMedCrossRefGoogle Scholar
  12. Blalock, E.M., Porter, N.M., Landfield, P.W., 1999, Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures, J. Neurosci, 19, 8674–8684Google Scholar
  13. Blanchard, H., Li, Y., Cygler, M., Kay, C.M., Simon, J., Blanchard, H., Li, Y., Cygler, M., Kay, C.M., Simon, J.C., Davies, P.L., Elce, J. S., 1996, Ca(2+)-binding domain VI of rat calpain is a homodimer in solution: hydrodynamic, crystallization and preliminary X-ray diffraction studies, Protein Sci., 5, 535–537PubMedCrossRefGoogle Scholar
  14. Blomgren, K., Zhu, C., Wang, X., et al., 2001, Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”?, J. Biol. Chem., 276, 10191–10198PubMedCrossRefGoogle Scholar
  15. Branca, D., Gigliucci, A., Bano, D., Brini, M., Carafoli, E., 1999, Expression, partial purification and functional properties of the muscle specific calpain isoform p94, Eur. J. Biochem., 265, 839–46PubMedCrossRefGoogle Scholar
  16. Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., Hof, P.R., 2000, Tau protein isoforms, phosphorylation and role in neurodegenerative disorders, Brain. Res. Rev., 33, 95–130PubMedCrossRefGoogle Scholar
  17. Bushby, K.M.D., 1999, Making sense of the limb-girdle muscular dystrophies, Brain,122, 1403–1420PubMedCrossRefGoogle Scholar
  18. Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A., and Butler, P.C., 2003, Þ-Cell Deficit and Increased Þ-Cell Apoptosis in Humans With Type 2 Diabetes, Diabetes, 52, 102–110PubMedCrossRefGoogle Scholar
  19. Cai, D., Frantz, J.D., Tawa, N.E., P.A. Jr., Melendez, B.C., Oh, H.G., Lidov, P.O., Hasselgren, W.R., Frontera, J. and Lee, D.J. et al., 2004, IKKbeta/NF-kappaB activation causes severe muscle wasting in mice, Cell ,119 ,,285–298Google Scholar
  20. Carafoli, E., and Molinari, M., 1998, Calpain: a protease in search of a function?, Biochem. Biophys. Res. Commun., 247, 193–203.PubMedCrossRefGoogle Scholar
  21. Chae, J., Minami, N., Jin, Y., Nakagawa, M., Murayama, K., Igarashi, F. and Nonaka, I., 2001, Calpain 3 gene mutations: genetic and clinical-pathologic findings in limb-girdle muscular dystrophy, Neuromuscul. Dis., 11, 547–555CrossRefGoogle Scholar
  22. Chen, M., and Fernandez, H.L., 2005, Mu-calpain is functionally required for alpha-processing of Alzheimer’s beta-amyloid precursor protein, Biochem. Biophys. Res. Commun., 330, 714–21PubMedCrossRefGoogle Scholar
  23. Chrobakova, T., Hermanova, M., Kroupova, I., Vondracek, P., Marikova, T., Mazanec, R., Zamecnik, J., Stanek, J., Havlova, M. and Fajkusova, L., 2004, Mutations in Czech LGMD2A patients revealed by analysis of calpain3 mRNA and their phenotypic outcome, Neuromuscul. Disord., 14, 659–665PubMedCrossRefGoogle Scholar
  24. Coolican, S., and Hathaway, D., 1984, Effect of L-alpha-phosphatidylinositol on a vascular smooth muscle Ca 2+ -dependent protease, J. Biol. Chem. , 259, 11627–11630PubMedGoogle Scholar
  25. Cottin, P., Thompson, V., Sathe, S., Szpacenko, A., Goll, D., 2001, Autolysis of ν - and m-calpain from bovine skeletal muscle, Biol. Chem., 382, 767–776PubMedCrossRefGoogle Scholar
  26. Crocker, S.J., Smith, P.D., Jackson-Lewis, V., Lamba, W.R., Hayley, S.P., Grimm, E., Callaghan, S.M., Slack, R.S., Melloni, E., Przedborski, S., Robertson, G.S., Anisman, H., Merali, Z., Park, D.S., 2003, Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease, J. Neurosci., 23, 4081–4091PubMedGoogle Scholar
  27. Dayton, W., Goll, D., Zeece, M., Robson, R., Reville, W., 1976, A Ca 2+ -activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle, Biochemistry, 15, 2150–2158PubMedCrossRefGoogle Scholar
  28. Dear, T.N., and Boehm, T., 2000, Identification and characterization of two novel calpain large subunit genes, Gene , 274, 245–252CrossRefGoogle Scholar
  29. Dear, T.N., and Boehm, T., 1999, Diverse mRNA expression patterns of the mouse calpain genes Capn5, Capn6, and Capn 11 during development, Mech. Dev., 89, 201–209PubMedCrossRefGoogle Scholar
  30. Diaz, B., Moldoveanu, T., Kuiper, M., Campbell, R., Davies, P., 2004, Insertion Sequence 1 of Muscle-specific Calpain, p94, Acts as an Internal Propeptide, J. Biol. Chem., 279, 27656–27666Google Scholar
  31. Fanin, M., Nascimbeni, A.C., Fulizio, L., Trevisan, C.P., Meznaric-Petrusa, M. and Angelini, C., 2003, Loss of calpain-3 autocatalytic activity in LGMD2A patients with normal protein expression, Am. J. Pathol., 163, 1929–1936PubMedGoogle Scholar
  32. Fokkema, I.F., den Dunnen, J.T., and Taschner, P.E., 2005, LOVD: easy creation of a locus-specific sequence variation database using an “LSDB-in-a-box” approach , Hum.Mutat., 26, 63–68PubMedCrossRefGoogle Scholar
  33. Fougerousse, F., Gonin, P., Durand, M., Richard, I. and Raymackers, J.M., 2003, Force impairment in calpain 3-deficient mice is not correlated with mechanical disruption, Muscle Nerve, 27, 616–623PubMedCrossRefGoogle Scholar
  34. Garcia Diaz, B.E, Gauthier, S., Davies, PL., 2006, Ca 2+ dependency of calpain 3 (p94) activation, Biochemistry, 45, 3714–22PubMedCrossRefGoogle Scholar
  35. Garvey, S.M., Rajan, C., Lerner, A.P., Frankel, W.N. and Cox, G.A., 2002, The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin, Genomics, 79, 146–149PubMedCrossRefGoogle Scholar
  36. Gil-Parrado, S., Fernàndez-Montalvàn, A., Assfalg-Machleidt, I., Popp, O., Bestvater, F., Holloschi, A., Knoch, T.A., Auerswald, E.A., Welsh, K., Reed, J.C., Fritz, H., Fuentes-Prior, P., Spiess, E., Salvesen, G.S., Machleidt, W., 2002, Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members, J. Biol. Chem., 277, 27217–27226PubMedCrossRefGoogle Scholar
  37. Gil-Parrado, S., Popp, O., Knoch, T., Zahler, T., Bestvater, F., Felgenträger, M., Holloschi, A., Fernàndez-Montalavan, A., Auerswald, D., Fritzh, H., Fluentes-Prior, P., Machleidt, W., Spiess, E., 2003, Subcellular localization and in vivo subunit interactions of ubiquitous ν -calpain, J. Biol. Chem., 278Google Scholar
  38. Goll, D.E., Thompson, V.F., Li, H., Wei, W., and Cong, J., 2003, The Calpain System, Physiol. Rev., 83, 731–801PubMedGoogle Scholar
  39. Gonzalez, A., Abril, E., Roca, A., Aragon, M.J., Figueroa, M.J., Velarde, P., Royo, J.L., Real, L.M., Ruiz, A., CAPN10 alleles are associated with polycystic ovary syndrome, J. Clin. Endocrinol. Metab., 87, 3971–3976Google Scholar
  40. Gregorio, C., Granzier, H., Sorimachi, H., Labeit, S.,1999, Muscle assembly: a titanic achievement?, Curr. Opin. Cell. Biol., 11, 18–25PubMedCrossRefGoogle Scholar
  41. Griffin, M.E., Marcucci, M.J., Cline, G.W., Bell, K., Barucci, N., Lee, D., Goodyear, L.J., Kraegen, E.W., White, M.F., Shulman, G.I., 1999, Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 48, 1270–4PubMedCrossRefGoogle Scholar
  42. Guroff, G., 1964, A neutral, calcium-activated proteinase from the soluble fraction of rat brain, J. Biol. Chem., 239, 149–55PubMedGoogle Scholar
  43. Guyon, J.R., Kudryashova, E., Potts, A., Dalkilic, I., Brosius, M.A., Thompson, T.G., Beckmann, J.S., Kunkel, L.M. and. Spencer M.J., 2003, Calpain 3 cleaves filamin C and regulates its ability to interact with gamma- and delta-sarcoglycans, Muscle Nerve, 28, 472–483PubMedCrossRefGoogle Scholar
  44. Hanis, C.L., Boerwinkle, E., Chakraborty, R., Ellsworth, D.L., Concannon, P., Stirling, B., Morrison, V.A., Wapelhorst, B., Spielman, R.S., Gogolin-Ewens, K.J., Shephard, J.M., Williams, S.R., Risch, N., Hinds, D., Iwasaki, N., Ogata, M, Omori, Y., Petzold, C., Rietzch, H., Schroder, H.E., Schulze, J., Cox, N.J., Menzel, S., Boriraj, V.V., and Chen, X., et al., 1996, A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2, Nat. Genet., 13 , 161–166PubMedCrossRefGoogle Scholar
  45. Haravuori, H., Vihola, A., Straub, V., Auranen, M., Richard, I., Marchand, S., Voit, T., Labeit, S., Somer, H. and Peltonen, L., et al., 2001 , Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene, Neurology, 56, 869–877PubMedGoogle Scholar
  46. Harris, F., Chatfield, L., Singh, J., Phoenix, D.A., 2004, Role of calpains in diabetes mellitus: a mini review, Mol. Cell. Biochem., 261, 161–7PubMedCrossRefGoogle Scholar
  47. Hosfield, C., Elce, J., Davies, P., Jia Z., 1999, Crystal structure of calpain reveals the structural basis for Ca 2+ -dependent protease activity and a novel mode of enzyme activation, EMBO J., 18, 6880–6889PubMedCrossRefGoogle Scholar
  48. Hoffstedt, J., Naslund, E., Arner, P., 2002, Calpain-10 gene polymorphism is associated with Reduced Þ 3-Adrenoceptor function in human fat cells, J. Clin. Endocr. Metab., 87, 3362–3367PubMedCrossRefGoogle Scholar
  49. Horikawa, Y., Oda, N., Cox, N.J., et al., 2000, Genetic varation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus, Nat. Genet., 26, 163–165PubMedCrossRefGoogle Scholar
  50. Illa, I., Serrano-Munuera, C., Gallardo, E., Lasa, A., Rojas-Garcia, R., Palmer, J., Gallano, P., Baiget, M., Matsuda, C., and Brown, R.H., 2001, Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype, Ann. Neurol., 49, 130–134PubMedCrossRefGoogle Scholar
  51. Inomata, M., Saito, Y., Kon, K., Kawashima, S., 1990, Binding sites for calcium-activated neutral protease on erythrocyte membranes are not membrane phospholipids. Biochem.Biophys. Res. Commun., 171, 625–632PubMedCrossRefGoogle Scholar
  52. Jia, Z., Petrounevitch, V., Wong, A., Moldoveanu, T., Davies, P.L., Elce, J.S., and Beckmann, J.S., 2001, Mutations in calpain 3 associated with limb girdle muscular dystrophy: analysis by molecular modeling and by mutation in m-calpain, Biophys. J., 80, 2590–2596PubMedCrossRefGoogle Scholar
  53. Johnson, J.D., Ahmed, N.T., Luciani, D. S., Han, Z., Tran, H., Fujita, J., Misler, S., Edlund, H., and Polonsky, K.S., 2003, Increased islet apoptosis in Pdx1+/– mice, J. Clin. Invest., 111, 1147–1160PubMedCrossRefGoogle Scholar
  54. Jordàn, J., Galindo, M.F., Miller, R.J.,1997, Role of calpain- and interleukin-1 beta converting enzyme-like proteases in the beta-amyloid-induced death of rat hippocampal neurons in culture, J. Neurochem., 68, 1612–1621PubMedCrossRefGoogle Scholar
  55. Saito, K., Elce, J.S., Hamos, J.E., and Nixon, R.A., 1993, Widespread Activation of Calcium-Activated Neutral Proteinase (Calpain) in the Brain in Alzheimer Disease: A Potential Molecular Basis for Neuronal Degeneration, Proc. Natl. Acad. Sci. U. S. A., 90, 2628–2632PubMedCrossRefGoogle Scholar
  56. Kawai, H., Akaike, M., Kunishige, M., Inui, T., Adachi, K., Kimura, C., Kawajiri, M., Nishida, Y., Endo, I., and Kashiwagi, S. et al., 1998, Clinical, pathological, and genetic features of limb-girdle muscular dystrophy type 2A with new calpain 3 gene mutations in seven patients from three Japanese families , Muscle Nerve, 21, 1493–1501PubMedCrossRefGoogle Scholar
  57. Kim, M.J., Jo, D.G., Hong, G.S., Kim, B.J., Lai, M., Cho, D.H., Kim, K.W., Bandyopadhyay, A., Hong, Y.M., Kim, D.H., Cho, C., Liu, J.O., Snyder, S.H., Jung, Y.K., 2002, Calpain-dependent cleavage of cain/cabin1 activates calcineurin to mediate calcium-triggered cell death, Proc. Natl. Acad. Sci. USA, 99, 9870–9875Google Scholar
  58. Kinbara, K., Ishiura, S., Tomioka, S., Sorimachi, H., Jeong, S.Y., Amano, S., Kawasaki, H., Kolmerer, B., Kimura, S., Labeit, S., Suzuki, K., 1998 , Purification of native p94, a muscle-specific calpain, and characterization of its autolysis, Biochem J., 335, 589–96PubMedGoogle Scholar
  59. Kinbara, K., Sorimachi, H., Ishiura, S., Suzuki, K., 1997, Muscle-specific calpain, p94, interacts with the extreme C-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs, Arch. Biochem. Biophys, 342, 99–107PubMedCrossRefGoogle Scholar
  60. Kotaka, M., Kostin, S., Ngai, S., Chan, K., Lau, Y., Lee, S.M., Li H., Ng, E.K., Schaper, J., Tsui SK, Fung K, Lee C, Waye MM. ,2000,Interaction of hCLIM1, an enigma family protein, with alpha-actinin 2.,J. Cell. Biochem. ,78,,558–65Google Scholar
  61. Kotaka, M., Lau, Y.M., Cheung, K.K., Lee, S.M., Li, H.Y., Chan, W.Y., Fung, K.P., Lee, C.Y., Waye, M.M., Tsui, S.K., 2001, Elfin is expressed during early heart development, 83, 463–72Google Scholar
  62. Kramerova, I., Kudryashova E., Venkatraman, G., and Spencer, M.J., 2005, Calpain 3 participates in muscle remodeling by acting upstream of the ubiquitin-proteasome pathway, Hum. Mol. Genet., 14, 2125–2134PubMedCrossRefGoogle Scholar
  63. Kuboki, M; Ishii, H; Kazama, M., 1990, Characterization of calpain I-binding proteins in human erythrocyte plasma membrane, J. Biochem., 107, 776–780PubMedGoogle Scholar
  64. Kuboki, M., Ishii, H., and Kazama, M., 1987, Procalpain is activated on the plasma membrane and the calpain acts on the membrane, Biochim. Biophys. Acta, 929, 164–172PubMedCrossRefGoogle Scholar
  65. Labeit, S., Kolmerer, B., 1995, Titins: giant proteins in charge of muscle ultrastructure and elasticity, Science, 270, 293–296PubMedCrossRefGoogle Scholar
  66. Lankiewicz, S., Luetjens, C.M., Nguyen, T.B., Krohn, A.J., Poppe, M., Cole, G.M., Saido, T.C., Prehn, J.H.M., 2000, Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death, J. Biol. Chem., 275, 17064–17071PubMedCrossRefGoogle Scholar
  67. Lee, W. J., Adachi, Y., Maki, M., Hatanaka, M., and Murachi, T., 1990, Factors influencing the binding of calpain I to human erythrocyte inside-out vesicles, Biochem. Int., 22, 163–171PubMedGoogle Scholar
  68. Liu, J., Aoki, M., Illa, I., Wu, C., Fardeau, M., Angelini, C., Serrano, C., Urtizberea, J.A., Hentati, F., and Hamida, M.B., et al., 1998, Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy, Nat. Genet., 20, 31–36PubMedCrossRefGoogle Scholar
  69. Logie, L.J., Brown, A.E., Yeaman, S.J., Walker, M., 2005, Calpain inhibition and insulin action in cultured human muscle cells, Mol. Genet. Metab, 85, 54–60PubMedCrossRefGoogle Scholar
  70. Lynn, S., Evans, J.C., White, C.B., Frayling, T.M., Hattersley, A.T., Turnbull, D.M., Horikawa, Y., Cox, N.J., Bell, G.I., and Walker, M. , 2002, Variation in the calpain-10 gene affects blood glucose levels in the British population, Diabetes, 51, 247–250PubMedCrossRefGoogle Scholar
  71. Ma, H., Fukiage, C., Kim, Y.H., Duncan, M.K., Reed, N.A., Shih, M., Azuma, M., and Shearer, T.S., 2001, Characterization and expression of calpain 10. A novel ubiquitous calpain with nuclear localization, J. Biol. Chem., 276, 28525–28531PubMedCrossRefGoogle Scholar
  72. Marshall, C., Hitman, G.A., Partridge, C.J., Clark, A., Ma, H., Shearer, T.R., Turner, M.D., 2005, Evidence that an isoform of calpain-10 is a regulator of exocytosis in pancreatic beta-cells, Mol. Endocrinol., 19, 213–24PubMedCrossRefGoogle Scholar
  73. Mathews, P.M., Jiang, Y., Schmidt, S.D., Grbovic, O.M., Mercken, M., Nixon, R.A., 2002, Calpain activity regulates the cell surface distribution of amyloid precursor protein. Inhibition of calpains enhances endosomal generation of B-cleaved C-terminal APP fragments, J. Biol. Chem., 277, 36415–36424PubMedCrossRefGoogle Scholar
  74. Mcclelland, P., Lash, J., Hataway, D., 1989, Identification of major autolytic cleavage sites in the regulatory subunit of vascular Calpain II. A comparison of partial amino-terminal sequences to deduced sequence from complementary DNA, J. Biol. Chem., 264, 17428–17431Google Scholar
  75. Mellgren, R., Song, K., Mericle, M., 1993, m-Calpain requires DNA for activity on nuclear proteins at low calcium concentrations, J. Biol. Chem., 268, 653–657PubMedGoogle Scholar
  76. Melloni, E., Michetti, M., Salamino, F., Pontremoli, S., 1998, Molecular and functional properties of a calpain activator protein specific for ν -isoforms, J. Biol. Chem., 273, 12827–12831PubMedCrossRefGoogle Scholar
  77. Moldoveanu, T., Hosfield, C., Lim, D., Elce, J., Jia, Z., Davies, P., 2002, A Calcium switch aligns the active site of calpain, Cell, 108, 649–660PubMedCrossRefGoogle Scholar
  78. Mouatt-Prigent, A., Karlsson, J.O., Agid, and Hirsch E.C., 1996, Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death, Neuroscience, 73, 979–987PubMedCrossRefGoogle Scholar
  79. Mundo, E., Soldati, L., Bellodi, L., Bianchi, G., 1997, The calpain-calpastatin system in obsessive-compulsive disorder, Biol. Psychiatry; 42, 228–229PubMedCrossRefGoogle Scholar
  80. Nath, R., Davis, M., Probert, A.W., Kupina, N.C., Ren, X., Schielke, G.P., Wang, K.K.W., 2000, Processing of cdk5 Activator p35 to Its Truncated Form (p25) by Calpain in Acutely Injured Neuronal Cells, Biochem. Biophys. Res. Commun., 274, 16–21PubMedCrossRefGoogle Scholar
  81. Nixon, R.A., Mohan, P., 1999, Calpains in the pathogenesis of Alzheimer’s disease. in: Wang KKW, Yuen P-W, eds. Calpain: pharmacology and toxicology of calcium-dependent protease. Philadelphia: Taylor & Francis, 267–91Google Scholar
  82. Okitani, A., Goll, D., Stromer, M., Robson, R., Intracellular inhibitor of a Ca 2+ -dependent proteinase involved in myofibrillar protein turnover, Federation Proc., 35, 1746Google Scholar
  83. Ono, Y., Sorimachi, H., Suzulu, K., 2004, Structure, Activation, and Biology of Calpain, Biochem. Biophys. Res. Commun, 245, 284–294Google Scholar
  84. Ono, Y., Shimada, H., Sorimachi, H., Richard, I., Saido, T.C., Beckmann, J.S., Ishiura, S., and Suzuki, K., 1998, Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A, J. Biol. Chem., 273, 17073–17078PubMedCrossRefGoogle Scholar
  85. Ono, Y., Torii, F., Ojima, K., Doi, N., Yoshioka, K., Kawabata, Y., Labeit, D., Labeit, S., Suzuki, K., Abe, K., Maeda, T., Sorimachi, H., 2006, Suppressed disassembly of autolyzing p94/CAPN3 by N2A connectin/titin in a genetic reporter system, J. Biol. Chem., 281, 18519–31PubMedCrossRefGoogle Scholar
  86. Orho-Melander, M., Klannemark, M., Svensson, M.K., Ridderstrale, M., Lindgren, C.M., and Groop, L., 2002, Variants in the calpain-10 gene predispose to insulin resistance and elevated free fatty acid levels, Diabetes, 51, 2658–2664PubMedCrossRefGoogle Scholar
  87. Otani, K., Han, D.H., Ford, E.L., Garcia-Roves, P.M., Ye, H., Horikawa, Y., Bell, G.I., Holloszy, J.O., Polonsky, K.S., 2004, Calpain system regulates muscle mass and glucose transporter GLUT4 turnover, J. Biol. Chem., 279, 20915–2Google Scholar
  88. Otani, K., Polonsky, K.S., Holloszy, J.O., Han, D.H., 2006, Inhibition of calpain results in impaired contraction-stimulated GLUT4 translocation in skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 291, 544–8CrossRefGoogle Scholar
  89. Papp, Z., van der Velden, J., Stienen, G.J., 2000, Calpain-I induced alterations in the cytoskeletal structure and impaired mechanical properties of single myocytes of rat heart,. Cardiovasc. Res., 45, 981–993PubMedCrossRefGoogle Scholar
  90. P.F. van der Ven, Wiesner, S., Salmikangas, P., Auerbach, D., Himmel, M., Kempa, S., Hayess, K., Pacholsky, D., Taivainen, A., and Schröder, R., et al., 2000, Indications for a novel muscular dystrophy pathway. gamma-filamin, the muscle-specific filamin isoform, interacts with myotilin, J. Cell Biol., 151, 235–248PubMedCrossRefGoogle Scholar
  91. Pintèr, M., and Friedrich, P., 1988, The calcium dependent proteolytic system calpain-calpatatin in Drosophila melanogaster, Biochem J., 253, 467–473PubMedGoogle Scholar
  92. Pintèr, M., Stierandova, A., and Friedrich, P., 1992, Purification and characterization o a Ca 2+ activated thiol protease from drosophila melanogaster, Biochemistry, 31, 8201–8206PubMedCrossRefGoogle Scholar
  93. Pontremoli, S., Melloni, E., Michetti, M., Salamino, F., Sparatore, B., Horecker, B., 1988, An endogenous activator of the Ca 2+ -dependent proteinase of human neutrophils that increases its affinity for Ca 2+ , Proc. Natl. Acad. Sci., USA, 85, 1740–1743PubMedCrossRefGoogle Scholar
  94. Pontremoli, S., Melloni, E., Viotti, PL., Michetti, M., Di Lisa, F., Siliprandi, N., 1990, Isovalerylcarnitine is a specific activator of the high calcium requiring calpain forms, Biochem. Biophys. Res. Commun., 167, 373–380CrossRefGoogle Scholar
  95. Pontremoli, S., Viotti P., Michetti, M., Sparatore, B., Salamino, F., Melloni, E., 1990, Identification of an endogenous activator of calpain in rat skeletal muscle, Biochem. Biophys. Res. Commun., 171, 569–574PubMedCrossRefGoogle Scholar
  96. Rey, M., and Davies, P., 2002, The protease core of the muscle-specific calpain, p94, undergoes Ca 2+ -dependent intramolecular autolysis, FEBS Lett., 532, 401–6PubMedCrossRefGoogle Scholar
  97. Richard, I., Broux, O., Allamand, V., Fougerousse, F., Chiannilkulchai, N., Bourg, N., Brenguier, L., Devaud, C., Pasturaud, P., Roudaut, C., Hillaire, D., Passos-Bueno, M.-R., Zatz, M., Tischfield, J.A., Fardeau, M., Jackson, C.E., Cohen, D., and Beckmann, J.S., 1995, Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A, Cell, 81, 27–40PubMedCrossRefGoogle Scholar
  98. Richard, I., Roudant, C., Saenz, A., et al., 1999, Calpainopathy, a survey of mutations and polymorphism, Am. J. Hum. Genet., 64, 1524–1540PubMedCrossRefGoogle Scholar
  99. Rizo, J., and Sudhof, T.C., 1998, C2-domains, structure and function of a universal Ca 2+ -binding domain, J. Biol. Chem., 273, 15879 –15822PubMedCrossRefGoogle Scholar
  100. Romero, P.J., Salas, V., Hernandez, C.,,2002,Calcium pump phosphoenzyme from young and old human red cells.,,26,,945–949Google Scholar
  101. Saito, K., Elce, J.S., Hamos, J.E., Nixon, R.A., 1993, Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration, Proc. Natl. Acad. Sci. U.S.A., 90, 2628–2632PubMedCrossRefGoogle Scholar
  102. Saido, T., Shibata, M., Takenawa, T., Murofushi, H., Suzuki, K., 1992, Positive regulation of ν -calpain action by polyphosphoinositides, J. Biol. Chem., 267, 24585–24590PubMedGoogle Scholar
  103. Sandmann, S., Yu, M., Unger, T., 2001, Transcriptional and translational regulation of calpain in the rat heart after myocardial infarction – effects of AT(1) and AT(2) receptor antagonists and ACE inhibitor, Br. J. Pharmacol.; 132, 767–777PubMedCrossRefGoogle Scholar
  104. Sedarous, M., Keramaris, E., O’Hare, M., Melloni, E., Slack, R.S., Elce, J.S., Greer, P.A., Park, D.S., 2003, Calpains mediate p53 activation and neuronal death evoked by DNA damage, J. Biol. Chem., 278, 26031–26038PubMedCrossRefGoogle Scholar
  105. Shearer, T.R., Ma, H., Shih, M., Fukiage, C., Azuma, M., 2000, Calpains in the lens and cataractogenesis, Methods Mol. Biol.; 144, 277–285PubMedGoogle Scholar
  106. Shields, D.C., Schaecher, K.E., Saido, T.C., Banik, N.L., 1999, A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain, Proc. Natl. Acad. Sci. U S A; 96,11486–11491PubMedCrossRefGoogle Scholar
  107. Shollmeyer, J., 1986, Possible role of calpain I and calpain II in differentiating muscle, Exp. Cell. Res., 163, 413–422CrossRefGoogle Scholar
  108. Shollmeyer, J., 1986, Role of Ca 2+ and Ca 2+ -activated protease in myoblast fusion, Exp. Cell. Res.,162, 411–422CrossRefGoogle Scholar
  109. Sokol, S.B., and Kuwabara, P.E., 2000, Proteolysis in Caenorhabditis elegans sex determination: cleavage of TRA-2A by TRA-3, Genes.Dev., 14, 901–906PubMedGoogle Scholar
  110. Sorimachi, H., Forsberg, N.E., Lee, H.J., Joeng, S.Y., Richard, I., Beckmann, J.S., Ishiura, S., and Suzuki, K., 1996, Highly conserved structure in the promoter region of the gene for muscle-specific calpain, p94, Biol. Chem., 377, 859–864PubMedGoogle Scholar
  111. Sorimachi, H., Imajoh, O.S., Emori, Y., Kawasaki, H., Ohno, S., Minami, Y., and Suzuki, K., 1989, Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle, J. Biol. Chem., 264, 20106–20111PubMedGoogle Scholar
  112. Sorimachi, H., Ohmi, S., Emori, Y., Kawasaki, H., Saido, T., Ohno, S., Minami, Y., Suzuki, K., 1990, A novel member of the calcium-dependent cysteine protease family, Biol. Chem. Hoppe Seyler., 371, 171–6PubMedGoogle Scholar
  113. Sorimachi, H., Ono, Y., Suzuki, K., 2000, Skeletal muscle-specific calpain, p94, and connectin/titin: their physiological functions and relationship to limb-girdle muscular dystrophy type 2A, Adv. Exp. Med. Biol., 481, 383–95PubMedGoogle Scholar
  114. Sorimachi, H., and Suzuki, K., 2001, The structure of calpain, J. Biochem., 129, 653–654PubMedGoogle Scholar
  115. Sorimachi, H., Toyama-Sorimachi, N., Saido, T. C., Kawasaki, H., Sugita, H., Miyasaka, M., Arahata, K., Ishiura, S., Suzuki, K., 1993, Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle, J. Biol. Chem., 268, 10593–10605PubMedGoogle Scholar
  116. Stossel, T.P., Condeelis, J., Cooley, L., Hartwig, J.H., Noegel, A., Schleicher, M., and Shapiro, S.S., 2001, Filamins as integrators of cell mechanics and signalling, Nat. Rev. Mol. Cell. Biol., 2, 138–145PubMedCrossRefGoogle Scholar
  117. Strobl, S., Fernandez-Catalan, C., Braun, M., Huber, R., Masumoto, H., Nakagawa, K., Irie, A., Sorimachi, H., Bourenkow, G., Bartunik, H., Suzuki, K., Bode, W., 1999, The crystal structure of calcium free human m-calpain suggests an electrostatic switch mechanism for activation by calcium, PNAS, 97, 588–592CrossRefGoogle Scholar
  118. Sugimoto, K., Katsuya, T., Ishikawa, K., Iwashima, Y., Yamamoto, K., Fu, Y., Matsuo, A., Motone, M., Rakugi, H., Ogihara, T., 2003, UCSNP-43 G/A polymorphism of calpain-10 gene is associated with hypertension and dyslipidemia in Japanese population, Am. J. Hypertens., 16, A82CrossRefGoogle Scholar
  119. Suzuki, K., Hata, S., Kawabata, Y., Sorimachi, H.,. Structure, activation, and biology of calpain, 2004, Diabetes, ;53, 12–8.Google Scholar
  120. Suzuki, K., Tsuji, S., Kubota, S., Kimura, Y., Imahori, K., 1981, Limited autolysis of Ca 2+ -activated neutral protease (CANP) changes its sensitivity to Ca 2+ ions, J. Biochem., 90, 275–278PubMedGoogle Scholar
  121. Taveau, M., Bourg, N., Sillon, G., Roudaut, C., Bartoli, M., and Richard, I., 2003, Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components, Mol. Cell. Biol., 23, 9127–9135PubMedCrossRefGoogle Scholar
  122. Thompson, T.G., Cha, Y.M., Hack, A.A., Brosius, M., Rajala, M., Lidov, H.G., McNally, E.M., Watkins, S., and Kunkel, L.M., 2000, Filamin 2 (FLN2): a muscle-specific sarcoglycan interacting protein, J. Cell Biol., 148, 115–126PubMedCrossRefGoogle Scholar
  123. Thompson, V.F., and Goll, D.E., 2000, Purification of mu-calpain, m-calpain, and calpastatin from animal tissues, Methods. Mol. Biol., 144, 3–16PubMedGoogle Scholar
  124. Tidball, J.G, Spencer, M.J., 2000, Calpains and muscular dystrophies, Int. J. Biochem. Cell. Biol.; 32, 1–5PubMedCrossRefGoogle Scholar
  125. Tompa, P., Emori, Y., Sorimachi, H., Suzuki, K., Friedrich, P., 2001, Domain III of calpain is a Ca 2+ -regulated phospholipid-binding domain, Biochem. Biophys. Res. Commun., 280, 1333–1339PubMedCrossRefGoogle Scholar
  126. Tompa, P., Mucsi, Z., Orosz, G., Friedrich, P., 2002, Calpastatin subdomains A and C are activators of calpain, J. Biol. Chem., 277, 9022–6PubMedCrossRefGoogle Scholar
  127. Tsuji, T., Ohga, Y., Yoshikawa, Y., et al., 2001, Rat cardiac contractile dysfunction induced by Ca 2+ overload: possible link to the proteolysis of alpha-fodrin, Am. J. Physiol. Heart. Circ. Physiol., 281, 1286–1294Google Scholar
  128. Tsuji, T., Shimohama, S., Kimura, J., Shimizu, K., 1998, m-Calpain (calcium-activated neutral proteinase) in Alzheimer’s disease brains, Neurosci. Lett.; 248, 109–112PubMedCrossRefGoogle Scholar
  129. Vanderklish, P.W., and Bahr, B.A., 2000, The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states, Int. J. Exp. Path., 81, 323–339CrossRefGoogle Scholar
  130. Vorgerd, M., P.F., van der Ven, Bruchertseifer, M., Lowe, T., Kley, R.A., Schroder, R., Lochmuller, H., Himmel, M., Koehler, K., and Furst, D.O., et al., 2005, A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy, Am. J. Hum. Genet., 77, 297–304PubMedCrossRefGoogle Scholar
  131. Walton, J.N., and Nattrass, F.J., 1954, On the classification, natural history and treatment of the myopathies, Brain, 77, 169–231PubMedCrossRefGoogle Scholar
  132. Wang, K.K.W., 2000, Calpain or caspase: can you tell the difference?, Trends. Neurosci., 23, 20–26PubMedCrossRefGoogle Scholar
  133. Wood, D.E., Thomas, A., Devi, L.A., Berman, Y., Beavis, R.C., Reed, J.C., Newcomb, E.W., 1998, Bax cleavage is mediated by calpain during drug-induced apoptosis, Oncogene, 17, 1069–1078PubMedCrossRefGoogle Scholar
  134. Xiao, G., Rabson, A.B., Young, W., Qing, G., Qu, Z., 2006, Alternative pathways of NF-kappaB activation: a double-edged sword in health and disease, Cytokine Growth Factor Rev., 17, 281–93PubMedCrossRefGoogle Scholar
  135. Xu, K., Driscoll, M., Tavernarakis, N., 2002, Specific aspartyl and calpain proteases are required for neurodegeneration in C, elegans, Nature , 419, 939–944PubMedCrossRefGoogle Scholar
  136. Yoshida, K., Inui, M., Harada, K., et al., 1995, Reperfusion of rat heart after brief ischemia induces proteolysis of calspectin (nonerythroid spectrin or fodrin) by calpain, Circ. Res., 77, 603–610PubMedGoogle Scholar
  137. Yoshikawa, Y., Mukai, H., Hino, F., Asada, K., Kato, I., 2000, Isolation of two novel genes, down-regulated in gastric cancer, Jpn. J. Cancer Res.; 91,,459–463PubMedGoogle Scholar
  138. Yoshizawa, T., Sorimachi, H., Tomioka, S., Ishiura, S., Suzuki, K., 1995, Calpain dissociates into subunits in the presence calcium ions, Biochem. Biophys. Res. Commun., 208, 376–383PubMedCrossRefGoogle Scholar
  139. Zatz, M., Vainzof, M., Passos-Bueno, M.R., 2000, Limb-girdle muscular dystrophy: one gene with different phenotypes, one phenotype with different genes, Curr. Opin. Neurol., 13, 511–517PubMedCrossRefGoogle Scholar
  140. Zimmerman, U., and Schlapfer, W., 1991, Two stage autolysis of the catalytic subunit initiates activation of calpain I, Biochim. Biophys. Acta, 1078, 192–198PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • I. BERTIPAGLIA
    • 1
  • E. CARAFOLI
    • 1
  1. 1.Department of BiochemistryUniversity of Padova, and Venetian Institute of Molecular MedicinePadovaItaly

Personalised recommendations