Diseases involving the Golgi calcium pump

  • L. DODE
  • F. Wuytack
  • L. Missiaen
Part of the Subcellular Biochemistry book series (SCBI, volume 45)


Secretory-pathway Ca 2+ -transport ATPases (SPCA) provide the Golgi apparatus with Ca 2+ and Mn 2+ needed for the normal functioning of this organelle. Loss of one functional copy of the human SPCA1 gene (ATP2C1) causes Hailey-Hailey disease, a rare skin disorder characterized by recurrent blisters and erosions in the flexural areas. Here, we will review the properties and functional role of the SPCAs. The relationship between Hailey-Hailey disease and its defective gene (ATP2C1) will be adressed as well


SPCA ATP2C1 ATP2C2 Hailey-Hailey disease Golgi apparatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amagai, M., Kobayashi, M., Wakabayashi, K., Hakuno, M., Hashiguchi, A., Nishikawa, T., Hata, J., 2001, A case of generalized Hailey-Hailey disease with fatal liver injury. Keio J. Med. 50, 109116Google Scholar
  2. Andersen, J.P., 1995, Dissection of the functional domains of the sarcoplasmic reticulum Ca 2+ -ATPase by site-directed mutagenesis. Biosci. Rep. 15, 243–261PubMedCrossRefGoogle Scholar
  3. Antebi, A, and Fink, G.R., 1992, The yeast Ca 2+ -ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol. Biol. Cell 3, 633–654PubMedGoogle Scholar
  4. Aronchik, I., Behne, M.J., Leypoldt, L., Crumrine, D., Epstein, E., Ikeda, S., Mizoguchi M., Bench, G., Pozzan, T., Mauro, T., 2003, Actin reorganization is abnormal and cellular ATP is decreased in Hailey-Hailey keratinocytes. J. Invest. Dermatol. 121, 681–687PubMedCrossRefGoogle Scholar
  5. Austin, C.D., and Shields, D., 1996, Prosomatostatin processing in permeabilized cells. Calcium is required for prohormone cleavage but not formation of nascent secretory vesicles. J. Biol. Chem. 271, 1194–1199PubMedCrossRefGoogle Scholar
  6. Banéres, J.L., Roquet, F., Martin, A., and Parello J., 2000, A minimized human integrin α5β1 that retains ligand recognition. J. Biol. Chem. 275, 5888–5903PubMedCrossRefGoogle Scholar
  7. Behne, M.J., Tu, C.L., Aronchik, I., Epstein, E., Bench, G., Bikle, D.D., Pozzan, T., and Mauro, T.M., 2003, Human keratinocyte ATP2C1 localizes to the Golgi and controls Golgi Ca 2+ stores. J. Invest. Dermatol. 121, 688–694PubMedCrossRefGoogle Scholar
  8. Bennett, B.D., Denis, P., Haniu, M., Teplow, D.B., Kahn, S., Louis, J.C., Citron, M., and Vassar, R., 2000, A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s beta-secretase. J. Biol. Chem. 275, 37712–37717PubMedCrossRefGoogle Scholar
  9. Berridge, M.J., 1993, Inositol trisphosphate and calcium signalling. Nature 361, 315–325PubMedCrossRefGoogle Scholar
  10. Berridge, M.J., 2002, The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32, 235–249PubMedCrossRefGoogle Scholar
  11. Brown., G.R., Benyon, S.L., Kirk, C.J., Wictome, M., East, J.M., Lee, A.G., and Michelangeli, F., 1994, Characterisation of a novel Ca 2+ pump inhibitor (bis-phenol) and its effects on intracellular Ca 2+ mobilization. Biochim. Biophys. Acta 1195, 252–258PubMedCrossRefGoogle Scholar
  12. Callewaert, G., Parys, J.B., De Smedt, H., Raeymaekers, L., Wuytack, F., Vanoevelen, J., Van Baelen, K., Simoni, A., Rizzuto, R., and Missiaen, L., 2003, Similar Ca 2+ -signaling properties in keratinocytes and in COS-1 cells overexpressing the secretory-pathway Ca 2+ -ATPase SPCA1. Cell Calcium 34, 157–162PubMedCrossRefGoogle Scholar
  13. Carnell, L., and Moore, H.P., 1994, Transport via the regulated secretory pathway in semi-intact PC12 cells: role of intra-cisternal calcium and pH in the transport and sorting of secretogranin II. J. Cell Biol. 127, 693–705PubMedCrossRefGoogle Scholar
  14. Chanat, E., and Huttner, W.B., 1991, Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J. Cell Biol. 115, 1505–1519PubMedCrossRefGoogle Scholar
  15. Chao, S.C., Tsai, Y.M., and Yang, M.H., 2002, Mutation analysis of ATP2C1 gene in Taiwanese patients with Hailey-Hailey disease. Br. J. Dermatol. 146, 595–600PubMedCrossRefGoogle Scholar
  16. Chun, S.I., Whang, K.C., and Su, W.P., 1988, Squamous cell carcinoma arising in Hailey-Hailey disease. J. Cutan. Pathol. 15, 234–237PubMedCrossRefGoogle Scholar
  17. Clarke, D.M., Loo, T.W., Inesi, G., and MacLennan, D.H., 1989, Location of high affinity Ca 2+ -binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca 2+ -ATPase. Nature 339, 476–478PubMedCrossRefGoogle Scholar
  18. Cockayne, S.E., Rassl, D.M., and Thomas, S.E., 2000, Squamous cell carcinoma arising in Hailey-Hailey disease of the vulva. Br. J. Dermatol. 142, 540–542PubMedCrossRefGoogle Scholar
  19. Creemers, J.W., Jackson, R.S., and Hutton, J.C., 1998, Molecular and cellular regulation of prohormone processing. Semin. Cell. Dev. Biol. 9, 3–10PubMedCrossRefGoogle Scholar
  20. Davidson, H.W., Rhodes, C.J., and Hutton, J.C., 1988, Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature 333, 93–96Google Scholar
  21. De Meis, L., and Vianna, A.L., 1979, Energy interconversion by the Ca 2+ -dependent ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 48, 275–292PubMedCrossRefGoogle Scholar
  22. Dmitriev, R.I., Pestov, N.B., Korneenko, T.V., Kostina, M.B., and Shakhparonov, M.I., 2005, Characterization of second isoform of secretory pathway Ca 2+ /Mn 2+ -ATPase. J. Gen. Physiol. 126, 71a–72aGoogle Scholar
  23. Dobson-Stone, C., Fairclough, R., Dunne, E., Brown, J., Dissanayake, M., Munro, C.S., Strachan, T., Burge, S., Sudbrak, R., Monaco, A.P., and Hovnanian, A., 2002, Hailey-Hailey disease: molecular and clinical characterization of novel mutations in the ATP2C1 gene. J. Invest. Dermatol. 118, 338–343PubMedCrossRefGoogle Scholar
  24. Dode, L., Andersen, J.P., Raeymaekers, L., Missiaen, L., Vilsen, B., and Wuytack, F., 2005, Functional comparison between secretory pathway Ca 2+ /Mn 2+ -ATPase (SPCA) 1 and sarcoplasmic reticulum Ca 2+ -ATPase (SERCA) 1 isoforms by steady-state and transient kinetic analyses. J. Biol. Chem. 280, 39124–39134PubMedCrossRefGoogle Scholar
  25. Dode, L., Andersen, J.P., Vanoevelen, J., Raeymaekers, L., Missiaen, L., Vilsen, B., and Wuytack, F., 2006, Dissection of the functional differences between human secretory pathway Ca 2+ /Mn 2+ -ATPase (SPCA) 1 and 2 isoenzymes by steady-state and transient kinetic analyses. J. Biol. Chem. 281, 3182–3189PubMedCrossRefGoogle Scholar
  26. Dürr, G., Strayle, J., Plemper, R., Elbs, S., Klee, S.K., Catty, P., Wolf, D.H., and Rudolph, H.K., 1998, The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca 2+ and Mn 2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol. Biol. Cell 9, 1149–1162PubMedGoogle Scholar
  27. Eckert, R.L., Crish, J.F., and Robinson, N.A., 1997, The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol. Rev. 77, 397–424PubMedGoogle Scholar
  28. Elias, P.M., Ahn, S.K., Denda, M., Brown, B.E., Crumrine, D., Kimutai, L.K., Komuves, L., Lee, S.H., and Feingold, K.R., 2002, Modulations in epidermal calcium regulate the expression of differentiation-specific markers. J. Invest. Dermatol. 119, 1128–1136PubMedCrossRefGoogle Scholar
  29. Fairclough, R.J., Dode, L., Vanoevelen, J., Andersen, J.P., Missiaen, L., Raeymaekers, L., Wuytack, F., and Hovnanian, A., 2003, Effect of Hailey-Hailey disease mutations on the function of a new variant of human secretory pathway Ca 2+ /Mn 2+ -ATPase (hSPCA1). J. Biol. Chem. 278, 24721–24730PubMedCrossRefGoogle Scholar
  30. Fairclough, R.J., Lonie, L., Van Baelen, K., Haftek, M., Munro, C.S., Burge, S.M., and Hovnanian, A., 2004, Hailey-Hailey disease: identification of novel mutations in ATP2C1 and effect of missense mutation A528P on protein expression levels. J. Invest. Dermatol. 123, 67–71PubMedCrossRefGoogle Scholar
  31. Foggia, L., and Hovnanian, A., 2004, Calcium pump disorders of the skin. Am. J. Med. Genet. 131C, 20–31CrossRefPubMedGoogle Scholar
  32. Gomes da Costa, A., and Madeira, V.M., 1986, Magnesium and manganese ions modulate Ca 2+ uptake and its energetic coupling in sarcoplasmic reticulum. Arch. Biochem. Biophys. 249, 199–206CrossRefGoogle Scholar
  33. Gonçalves, P.P., Meireles, S.M., Neves, P., and Vale, M.G., 1999, Synaptic vesicle Ca 2+ /H + antiport: dependence on the proton electrochemical gradient. Mol. Brain Res. 71, 178–184PubMedCrossRefGoogle Scholar
  34. Gunteski-Hamblin, A.M., Clarke, D.M., and Shull, G.E., 1992, Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump. Biochemistry 31, 7600–7608PubMedCrossRefGoogle Scholar
  35. Hailey, H., and Hailey, H., 1939, Familial benign chronic pemphigus. Report of 13 cases in 4 generations of a family and report of 9 additional cases in 4 generations of a family. Arch. Dermatol. Syphilol. 39, 679–685Google Scholar
  36. Harada, M., Hashimoto, K., and Fujiwara, K., 1994, Immunohistochemical distribution of CD44 and desmoplakin I & II in Hailey-Hailey’s disease and Darier’s disease. J. Dermatol. 21, 389–393PubMedGoogle Scholar
  37. Harper, C., Wootton, L., Michelangeli, F., Lefiévre, L., Barratt, C., and Publicover, S., 2005, Secretory pathway Ca 2+ -ATPase (SPCA1) Ca 2+ pumps, not SERCAs, regulate complex [Ca 2+ ] _i signals in human spermatozoa. J. Cell Sci. 118, 1673–1685PubMedCrossRefGoogle Scholar
  38. Hashimoto, K., Fujiwara, K., Harada, M., Setoyama, M., and Eto, H., 1995, Junctional proteins of keratinocytes in Grover’s disease, Hailey-Hailey’s disease and Darier’s disease. J. Dermatol. 22, 159–170PubMedGoogle Scholar
  39. Heilker, R., Manning-Krieg, U., Zuber, J.F., and Spiess, M., 1996, In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting. EMBO J. 15, 2893–2899PubMedGoogle Scholar
  40. Holst, V.A., Fair, K.P., Wilson, B.B., and Patterson, J.W., 2000, Squamous cell carcinoma arising in Hailey-Hailey disease. J. Am. Acad. Dermatol. 43, 368–371PubMedCrossRefGoogle Scholar
  41. Hu, Z., Bonifas, J.M., Beech, J., Bench, G., Shigihara, T., Ogawa, H., Ikeda, S., Mauro, T., and Epstein, E.H.Jr., 2000, Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat. Genet. 24, 61–65Google Scholar
  42. Huster, D., and Lutsenko, S., 2003, The distinct roles of the N-terminal copper-binding sites in regulation of catalytic activity of the Wilson’s disease protein. J. Biol. Chem. 278, 32212–32218PubMedCrossRefGoogle Scholar
  43. Ikeda, S., Mayuzumi, N., Ogawa, H., Shigihara, T., and Yu, X., 2001, Mutation of ATP2C1 in Japanese patients with Hailey-Hailey disease: Intrafamilial and interfamilial phenotype variations and lack of correlation with mutation patterns. J. Invest. Dermatol. 117, 1654–1656PubMedCrossRefGoogle Scholar
  44. Kaufman, R.J., Swaroop, M., and Murtha-Riel, P., 1994, Depletion of manganese within the secretory pathway inhibits O-linked glycosylation in mammalian cells. Biochemistry 33, 9813–9819PubMedCrossRefGoogle Scholar
  45. Kawada, H., Nishiyama, C., Takagi, A., Tokura, T., Nakano, N., Maeda, K., Mayuzumi, N., Ikeda, S., Okumura, K., and Ogawa, H., 2005, Transcriptional regulation of ATP2C1 gene by Sp1 and YY1 and reduced function of its promoter in Hailey-Hailey disease keratinocytes. J. Invest. Dermatol. 124, 1206–1214PubMedCrossRefGoogle Scholar
  46. Kellermayer, R., 2005, Hailey-Hailey disease as an orthodisease of PMR1 deficiency in Saccharomyces cerevisiae. FEBS Lett. 579, 2021–2025PubMedCrossRefGoogle Scholar
  47. Korner, J., Rietschel, M., Nothen, M.M., Wilk, C.M., Bauer, R., and Moller, H.J., 1993, Familial cosegregation of affective disorder and Hailey-Hailey disease. Br. J. Psychiatry 163, 109–110PubMedCrossRefGoogle Scholar
  48. Leinonen, P.T., Myllyla, R.M., Hagg, P.M., Tuukkanen, J., Koivunen, J., Peltonen, S., Oikarinen, A., Korkiamaki, T., and Peltone, J., 2005, Keratinocytes cultured from patients with Hailey-Hailey disease and Darier disease display distinct patterns of calcium regulation. Br. J. Dermatol. 153, 113–117PubMedCrossRefGoogle Scholar
  49. Levy, L., Broad, S., Diekmann, D., Evans, R.D., and Watt, F.M., 2000, Beta1 integrins regulate keratinocyte adhesion and differentiation by distinct mechanisms. Mol. Biol. Cell 11, 453–466PubMedGoogle Scholar
  50. Li, Y., Ge, M., Ciani, L., Kuriakose, G., Westover, E.J., Dura, M., Covey, D.F., Freed, J.H., Maxfield, F.R., Lytton, J., and Tabas, I., 2004, Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J. Biol. Chem. 279, 37030–37039PubMedCrossRefGoogle Scholar
  51. Lin, P., Yao, Y., Hofmeister, R., Tsien, R.Y., and Farquhar, M.G., 1999, Overexpression of CALNUC (nucleobindin) increases agonist and thapsigargin releasable Ca 2+ storage in the Golgi. J. Cell Biol. 145, 279–289PubMedCrossRefGoogle Scholar
  52. Lo-Guidice, J.M., Pèrini, J.M., Lafitte, J.J., Ducourouble, M.P., Roussel, P., and Lamblin, G., 1995, Characterization of a sulfotransferase from human airways responsible for the 3-O-sulfation of terminal galactose in N-acetyllactosamine-containing mucin carbohydrate chains. J. Biol. Chem. 270, 27544–27550PubMedCrossRefGoogle Scholar
  53. Mahapatra, N.R., Mahata, M., Hazra, P.P., McDonough, P.M., O’Connor, D.T., and Mahata, S.K., 2004, A dynamic pool of calcium in catecholamine storage vesicles. Exploration in living cells by a novel vesicle-targeted chromogranin A-aequorin chimeric photoprotein. J. Biol. Chem. 279, 51107–51121PubMedCrossRefGoogle Scholar
  54. Mandal, D., Woolf, T.B., and Rao, R., 2000a, Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport. J. Biol. Chem. 275, 23933–23938Google Scholar
  55. Mandal, D., Rulli, S.J., and Rao, R., 2000b, Packing interactions between transmembrane helices alter ion selectivity of the yeast Golgi Ca 2+ /Mn 2+ -ATPase PMR1. J. Biol. Chem. 278, 35292–35298Google Scholar
  56. Mauro, T., Bench, G., Sidderas-Haddad, E., Feingold, K., Elias, P., and Cullander, C., 1998, Acute barrier perturbation abolishes the Ca 2+ and K + gradients in murine epidermis: quantitative measurement using PIXE. J. Invest. Dermatol. 111, 1198–1201PubMedCrossRefGoogle Scholar
  57. Mayuzumi, N., Ikeda, S., Kawada, H., and Ogawa, H., 2005, Effects of drugs and anticytokine antibodies on expression of ATP2A2 and ATP2C1 in cultured normal human keratinocytes. Br. J. Dermatol. 152, 920–924PubMedCrossRefGoogle Scholar
  58. Meldolesi, J., and Pozzan, T., 1998, The endoplasmic reticulum Ca 2+ store: a view from the lumen. Trends Biochem. Sci. 23, 10–14PubMedCrossRefGoogle Scholar
  59. Menon, G.K., Grayson, S., and Elias, P.M., 1985, Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J. Invest. Dermatol. 84, 508–512PubMedCrossRefGoogle Scholar
  60. Metze, D., Hamm, H., Schorat, A., and Luger, T., 1996, Involvement of the adherens junction-actin filament system in acantholytic dyskeratosis of Hailey-Hailey disease: A histological, ultrastructural, and histochemical study of lesional and non-lesional skin. J. Cutan. Pathol. 23, 211–222PubMedCrossRefGoogle Scholar
  61. Mishiro, E., Liu, M.Y., Sakakibara, Y., Suizo, M., and Liu, M.C., 2004, Zebrafish tyrosylprotein sulfotransferase: molecular cloning, expression, and functional characterization. Biochem. Cell Biol. 82, 295–303PubMedCrossRefGoogle Scholar
  62. Missiaen, L., Vanoevelen, J., Van Acker, K., Raeymaekers, L., Parys, J.B., Callewaert, G., Wuytack, F., and De Smedt, H., 2002, Ca 2+ signals in Pmr1-GFP expressing COS-1 cells with functional endoplasmic reticulum. Biochem. Biophys. Res. Commun. 294, 249–253PubMedCrossRefGoogle Scholar
  63. Mitchell, K.J., Pinton, P., Varadi, A., Tacchetti, C., Ainscow, E.K., Pozzan, T., Rizzuto, R., and Rutter, G.A., 2001, Dense core secretory vesicles revealed as a dynamic Ca 2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J. Cell Biol. 155, 41–51PubMedCrossRefGoogle Scholar
  64. Mitchell, K.J., Tsuboi, T., and Rutter, G.A., 2004, Role for plasma membrane-related Ca 2+ -ATPase-1 (ATP2C1) in pancreatic beta-cell Ca 2+ homeostasis revealed by RNA silencing. Diabetes 53, 393–400PubMedCrossRefGoogle Scholar
  65. Molloy, S.S., Bresnahan, P.A., Leppla, S.H., Klimpel, K.R., and Thomas G., 1992, Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J. Biol. Chem. 267, 16396–16402PubMedGoogle Scholar
  66. Moreno, A., Lobaton, C.D., Santodomingo, J., Vay, L., Hernandez-SanMiguel, E., Rizzuto, R., Montero, M., and Alvarez, J., 2005, Calcium dynamics in catecholamine-containing secretory vesicles. Cell Calcium 37, 555–564PubMedCrossRefGoogle Scholar
  67. Negishi, M., Pedersen, L.G., Petrotchenko, E., Shevtsov, S., Gorokhov, A., Kakuta, Y., and Pedersen, L.C., 2001, Structure and function of sulfotransferases. Arch. Biochem. Biophys. 390, 149–157PubMedCrossRefGoogle Scholar
  68. Oda, K., 1992, Calcium depletion blocks proteolytic cleavages of plasma protein precursors which occur at the Golgi and/or trans-Golgi network. Possible involvement of Ca 2+ -dependent Golgi endoproteases. J. Biol. Chem. 267, 17465–17471PubMedGoogle Scholar
  69. Pinton, P., Pozzan, T., and Rizzuto, R., 1998, The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca 2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J. 17, 5298–5308PubMedCrossRefGoogle Scholar
  70. Poblete-Gutièrrez, P., Wiederholt, T., Konig, A., Jugert, F.K., Marquardt, Y., Rubben, A., Merk, H.F., Happle, R., and Frank, J., 2004, Allelic loss underlies type 2 segmental Hailey-Hailey disease, providing molecular confirmation of a novel genetic concept. J. Clin. Invest. 114, 1467–1474PubMedCrossRefGoogle Scholar
  71. Porgpermdee, S., Yu, X., Takagi, A., Mayuzumi, N., Ogawa, H., and Ikeda, S., 2005, Expression of SPCA1 (Hailey-Hailey disease gene product) in acantholytic dermatoses. J. Dermatol. Sci. 40, 137–140PubMedCrossRefGoogle Scholar
  72. Ramos-Castaneda, J., Park, Y.N., Liu, M., Hauser, K., Rudolph, H., Shull, G.E., Jonkman, M.F., Mori, K., Ikeda, S., Ogawa, H., and Arvan, P., 2005, Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum (ER)-associated degradation and sensitivity to ER stress. J. Biol. Chem. 280, 9467–9473PubMedCrossRefGoogle Scholar
  73. Reinhardt, T.A., Horst, R.L., and Waters, W.R., 2004, Characterization of Cos-7 cells overexpressing the rat secretory pathway Ca 2+ -ATPase. Am. J. Physiol. 286, C164-C169Google Scholar
  74. Reitamo, S., Remitz, A., Lauerma A.I., Forstrom L, 1989, Contact allergies in patients with familial benign chronic pemhigus (Hailey-Hailey disease). J. Am. Acad. Dermatol. 21, 506–510Google Scholar
  75. Rens-Domiano, S., and Roth, J.A., 1989, Characterization of tyrosylprotein sulfotransferase from rat liver and other tissues. J. Biol. Chem. 264, 899–905PubMedGoogle Scholar
  76. Rudolph, H.K., Antebi, A., Fink, G.R., Buckley, C.M., Dorman, T.E., LeVitre, J., Davidow, L.S., Mao, J.I., and Moir, D.T., 1989, The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca 2+ ATPase family. Cell 58, 133–145PubMedCrossRefGoogle Scholar
  77. Sakuntabhai, A., Ruiz-Perez, V., Carter, S., Jacobsen, N., Burge, S., Monk, S., Smith, M., Munro, C.S., O’Donovan, M., Craddock, N., Kucherlapati, R., Rees, J.L., Owen, M., Lathrop, G.M., Monaco, A.P., Strachan, T., and Hovnanian, A., 1999, Mutations in ATP2A2, encoding a Ca 2+ pump, cause Darier disease. Nat. Genet. 21, 271–277PubMedCrossRefGoogle Scholar
  78. Seko, A., Sumiya, J., and Yamashita, K., 2005, Porcine, mouse and human galactose 3-O-sulphotransferase-2 enzymes have different substrate specificities; the porcine enzyme requires basic compounds for its catalytic activity. Biochem. J. 391, 77–85PubMedCrossRefGoogle Scholar
  79. Sorin, A., Rosas, G., and Rao, R., 1997, PMR1, a Ca 2+ -ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane calcium pumps. J. Biol. Chem. 272, 9895–9901PubMedCrossRefGoogle Scholar
  80. Southall, T.D., Terhzaz, S., Cabrero, P., Chintapalli, V.R., Evans, J.M., Dow, J.A.T., and Davies, S.A., 2006, Novel subcellular locations and functions for secretory pathway Ca 2+ /Mn 2+ -ATPases. Physiol. Genomics 26, 35–45PubMedCrossRefGoogle Scholar
  81. Spiro, R.G., Yasumoto, Y., and Bhoyroo, V., 1996, Characterization of a rat liver Golgi sulphotransferase responsible for the 6-O-sulphation of N-acetylglucosamine residues in beta-linkage to mannose: role in assembly of sialyl-galactosyl-N-acetylglucosamine 6-sulphate sequence of N-linked oligosaccharides. Biochem. J. 319, 209–216PubMedGoogle Scholar
  82. Sudbrak, R., Brown, J., Dobson-Stone, C., Carter, S., Ramser, J., White, J., Healy, E., Dissanayake, M., Larregue, M., Perrussel, M., Lehrach, H., Munro, C.S., Strachan, T., Burge, S., Hovnanian, A., and Monaco, A.P., 2000, Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca 2+ pump. Hum. Mol. Genet. 12, 1131–1140CrossRefGoogle Scholar
  83. Taylor, R.S., Jones, S.M., Dahl, R.H., Nordeen, M.H., and Howell, K.E., 1997, Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol. Biol. Cell 8, 1911–1931PubMedGoogle Scholar
  84. Ton, V.K., Mandal, D., Vahadji, C., and Rao, R., 2002, Functional expression in yeast of the human secretory pathway Ca 2+ ,Mn 2+ -ATPase defective in Hailey-Hailey disease. J. Biol. Chem. 277, 6422–6427PubMedCrossRefGoogle Scholar
  85. Ton, V.K., and Rao, R., 2004, Expression of Hailey-Hailey disease mutations in yeast. J. Invest. Dermatol. 123, 1192–1194PubMedCrossRefGoogle Scholar
  86. Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H., 2000, Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405, 647–655PubMedCrossRefGoogle Scholar
  87. Van Baelen, K., Vanoevelen, J., Missiaen, L., Raeymaekers, L., and Wuytack, F., 2001, The Golgi PMR1 P-type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J. Biol. Chem. 276, 10683–10691PubMedCrossRefGoogle Scholar
  88. Van Baelen, K., Vanoevelen, J., Callewaert, G., Parys, J.B., De Smedt, H., Raeymaekers, L., Rizzuto, R., Missiaen, L., and Wuytack, F., 2003, The contribution of the SPCA1 Ca 2+ pump to the Ca 2+ accumulation in the Golgi apparatus of HeLa cells assessed via RNA-mediated interference. Biochem. Biophys. Res. Commun. 306, 430–436PubMedCrossRefGoogle Scholar
  89. Van Baelen, K., Dode, L., Vanoevelen, J., Callewaert, G., De Smedt, H., Missiaen, L., Parys, J.B., Raeymaekers, L., and Wuytack, F., 2004, The Ca 2+ /Mn 2+ pumps in the Golgi apparatus. Biochim. Biophys. Acta 1742, 103–112PubMedCrossRefGoogle Scholar
  90. Vanoevelen, J., Raeymaekers, L., Parys, J.B., De Smedt, H., Van Baelen, K., Callewaert, G., Wuytack, F., and Missiaen, L., 2004, Inositol trisphosphate producing agonists do not mobilize the thapsigargin-insensitive part of the endoplasmic-reticulum and Golgi Ca 2+ store. Cell Calcium 35, 115–121PubMedCrossRefGoogle Scholar
  91. Vanoevelen, J., Dode, L., Van Baelen, K., Fairclough, R.J., Missiaen, L., Raeymaekers, L., and Wuytack, F., 2005, The secretory pathway Ca 2+ /Mn 2+ -ATPase 2 is a Golgi-localized pump with high affinity for Ca 2+ ions. J. Biol. Chem. 280, 22800–22808PubMedCrossRefGoogle Scholar
  92. Wang, P., Wang, X., and Pei, D., 2004, Mint-3 regulates the retrieval of the internalized membrane-type matrix metalloproteinase, MT5-MMP, to the plasma membrane by binding to its carboxyl end motif EWV. J. Biol. Chem. 279, 20461–20470PubMedCrossRefGoogle Scholar
  93. Wei, Y., Marchi, V., Wang, R., and Rao, R., 1999, An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca 2+ /Mn 2+ -ATPase. Biochemistry 38, 14534–14541PubMedCrossRefGoogle Scholar
  94. Wei, Y., Chen, J., Rosas, G., Tompkins, D.A., Holt, P.A., and Rao, R., 2000, Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca 2+ /Mn 2+ -ATPase, reveals residues critical for ion selectivity and transport. J. Biol. Chem. 275, 23927–23932PubMedCrossRefGoogle Scholar
  95. Wilk, M., Rietschel, M., Korner, J., Moller, H.J., Nothen, M.M., Bauer, R., and Kreisel, H.W., 1994, Pemphigus chronicus benignus familiaris (Hailey-Hailey disease) and bipolar affective disease in three members of a family. Hautarzt 45, 313–317PubMedCrossRefGoogle Scholar
  96. Wootton, L.L., Argent, C.C., Wheatley, M., and Michelangeli, F., 2004, The expression, activity and localisation of the secretory pathway Ca 2+ -ATPase (SPCA1) in different mammalian tissues. Biochim. Biophys. Acta 1664, 189–197PubMedCrossRefGoogle Scholar
  97. Xiang, M., Mohamalawari, D., and Rao, R., 2005, A novel isoform of the secretory pathway Ca 2+ ,Mn 2+ -ATPase, hSPCA2, has unusual properties and is expressed in the brain. J. Biol. Chem. 280, 11608–11614PubMedCrossRefGoogle Scholar
  98. Yokota, K., and Sawamura, D., 2006, Hailey-Hailey disease with affective disorder: Report of a case with novel ATP2C1 gene mutation. J. Dermatol. Sci. 43, 150–151PubMedCrossRefGoogle Scholar
  99. Yoshida, M., Yamasaki, K., Daiho, T., Iizuka, H., and Suzuki, H., 2006, ATP2C1 is specifically localized in the basal layer of normal epidermis and its depletion triggers keratinocyte differentiation. J. Dermatol. Sci. 43, 21–33PubMedCrossRefGoogle Scholar
  100. Zhou, Y., and Lindberg, I., 1993, Purification and characterization of the prohormone convertase PC1(PC3). J. Biol. Chem. 268, 5615–5623PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

    • 1
  • L. DODE
    • 1
    • 1
  • F. Wuytack
    • 1
  • L. Missiaen
    • 1
  1. 1.Laboratory of PhysiologyKULeuven Campus Gasthuisberg O&N1Herestraat 49 bus 802Belgium

Personalised recommendations