Malaria, Climate Change and Possible Impacts on Populations in Africa

  • Andrew K. Githeko
Part of the International Studies in Population book series (ISIP, volume 6)

The historical records for Africa show warming of approximately 0.7°C over most of the continent during the twentieth century. The Intergovernmental Panel on Climate Change (IPCC), in its Third Assessment Report (2001) recorded that global warming of 1.4 to 5.8°C can be expected over the coming century. Malaria is the most climate sensitive vector-borne disease, affecting most of the African population. Both global warming and increased climate variability can increase malaria transmission. It is the areas where transmission is currently low, such as the highlands, that are most affected. In these areas protective genetic polymorphisms are infrequent, and immunity levels are low so that all ages are vulnerable.


Malaria Transmission Malaria Infection Severe Malaria Cerebral Malaria Parasite Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Githeko, A. K., Lindsay, S. W., Confalonieri, U. & Partz, J. (2000). Climate changes and Vector borne diseases: A regional analysis. Bulletin of the World Health Organization, 78, 1136–1147Google Scholar
  2. 2.
    Breman, J. G., Alilio, M. S. & Mills, A. (2004). Conquering the intolerable burden of malaria: What’s new, what’s needed: A summary. American Journal of Tropical Medicine and Hygiene, 71(Suppl 2), 1–15Google Scholar
  3. 3.
    D’Alessandro, U. & Buttiens, H. (2001). History and importance of antimalarial drug resistance. Tropical Medicine and International Health, 11, 845–848CrossRefGoogle Scholar
  4. 4.
    Mouchet, J., Manguin, S., Sircoulon, J., Laventure, S., Faye, O., Onapa, A. W., Carnevale, P., Julvez, J. & Fontenille, D. (1998). Evolution of malaria in Africa for the past 40 years: Impact of climatic and human factors. Journal of American Mosquito Control Association, 14, 121–130Google Scholar
  5. 5.
    Molineaux, L. (1988). The epidemiology of human malaria as an explanation of its distribution including some implications for its control. (In W. H. Wernsdofer, & I. McGregor (Eds.), Malaria. Principles and practice of malariology (pp. 913–998). Edinburg: Churchill Livingstone)Google Scholar
  6. 6.
    Looareesuwan, S., White, N. J., Silamut, K., Phillips, R. E. & Warrell, D. A. (1987). Quinine and severe falciparum malaria in late pregnancy. Acta Leiden, 55, 115–120Google Scholar
  7. 7.
    Hammerich, A., Campbell, O. M. & Chandramohan, D. (2002). Unstable malaria transmission and maternal mortality: Experiences from Rwanda. Tropical Medicine and International Health, 7, 573–576CrossRefGoogle Scholar
  8. 8.
    Moormann, A. M., Embury, P. E., Opondo, J., Sumba, O. P., Ouma, J. H., Kazura, J. W. & John, C. C. (2003). Frequencies of sickle cell trait and glucose-6-phosphate dehydrogenase deficiency differ in highland and nearby lowland malaria-endemic areas of Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene, 97, 513–514CrossRefGoogle Scholar
  9. 9.
    Wajcman, H. & Galacteros, F. (2004). Glucose 6-phosphate dehydrogenase deficiency: A protection against malaria and a risk for hemolytic accidents. Comptes Rendus Biologies, 327, 711–720CrossRefGoogle Scholar
  10. 10.
    Githeko, A. K., Brandling-Bennett, A. D., Beier, M., Atieli, F., Owaga, M. & Collins, F. H. (1992). The reservoir of Plasmodium falciparum malaria in a holoendemic area of western Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene, 86, 355–358CrossRefGoogle Scholar
  11. 11.
    Bloland, P. B., Boriga, D. A., Ruebush, T. K., McCormick, J. B., Roberts, J. M., Oloo, A. J., Hawley, W., Lal, A., Nahlen, B. & Campbell, C. C. (1999). Longitudinal cohort study of the epidemiology of malaria infections in an area of intense malaria transmission II. Descriptive epidemiology of malaria infection and disease among children. American Journal of Tropical Medicine Hygiene, 60, 641–648Google Scholar
  12. 12.
    Snow, R. W., Korenromp, E. L. & Gouws, E. (2004). Pediatric mortality in Africa: Plasmodium falciparum malaria as a cause or risk? American Journal of Tropical Medicine and Hygiene, 71(Suppl 2), 16–24Google Scholar
  13. 13.
    Snow, R. W. & Marsh, K. (2002). The consequences of reducing transmission of Plasmodium falciparum in Africa. Advances in Parasitology, 52, 235–264CrossRefGoogle Scholar
  14. 14.
    Tanser, F. C., Sharp, B. & le Sueur, D. (2003). Potential effect of climate change on malaria transmission in Africa. The Lancet, 362, 1792–1798CrossRefGoogle Scholar
  15. 15.
    Marsh, K. & Snow, R. W. (1999). Malaria transmission and morbidity. Parassitologia, 41, 241–246Google Scholar
  16. 16.
    John, C. C., Koech, D. K., Sumba, P. O. & Ouma, J. H. (2004). Risk of Plasmodium falciparum infection during a malaria epidemic in highland Kenya, 1997. Acta Tropica, 92, 55–61CrossRefGoogle Scholar
  17. 17.
    Lepers, J. P., Deloron, P., Andriamagatiana-Rason, M. D., Ramanamirija, J. A., & Coulanges, P. (1990). Newly transmitted Plasmodium falciparum malaria in the central highland plateaux of Madagascar: Assessment of clinical impact in a rural community. Bulletin of the World Health Organization, 68, 217–222Google Scholar
  18. 18.
    Intergovernmental Panel on Climate Change (IPCC) (2001a). Climate Change. In J. J. McCarthy, O. Canzianni, N. Leary, D. J. Dokken, & K. S. White (Eds.), Third Assessment Report, Impacts, Adaptations and Vulnerability of Climate Change (pp. 1023). Cambridge: University Press)Google Scholar
  19. 19.
    Intergovernmental Panel on Climate Change (1PCC) (2001b). Summary for Policy Makers. Working Group 1. Retrieved from–01.pdf
  20. 20.
    Climate Research Unit, UK. Retrieved from
  21. 21.
    Intergovernmental Panel on Climate Change (IPCC) special report (1998). Regional impacts of climate change: An assessment of vulnerability (pp. 517). (In R. T. Watson, M. C. Zinyowera, R. H. Moss & D. J. Dokken (Eds.), Cambridge: Cambridge University Press)Google Scholar
  22. 22.
    Nicholson, S. E. & Kim, J. (1997). The relationship of the Southern Oscillation to African rainfall. International Journal of Climatology, 17, 117–135CrossRefGoogle Scholar
  23. 23.
    Hastenrath, S. & Greischar, L. (1997). Glacier recession on Kilimanjaro, East Africa, 1912–1989. Journal of Glaciology, 43, 455–459Google Scholar
  24. 24.
    Hastenrath, S. & Kruss, P. D. (1992). The dramatic retreat of Mount Kenya’s glaciers between 1963 and 1987: Greenhouse forcing. Annals of Glaciology, 16, 127–133Google Scholar
  25. 25.
    Kaser, G. (1999). A review of the modern fluctuations of tropical glaciers. Global and Planetary Change, 22, 93–103CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Githeko, A. K. & Clive, S. (2005). The history of malaria control in Africa: Lessons learned and future perspectives. (In K. J. Ebi, J. Smith, & I. Burton (Eds.). Integration of public health with adaptation to climate change: Lessons learned and new directions. London: Talyor & Francis)Google Scholar
  28. 28.
    Worrall, E., Rietveld, A. & Delacollette, C. (2004). The burden of malaria epidemics and cost-effectiveness of interventions in epidemic situations in Africa. American Journal of Tropical Medicine and Hygiene, 71(Suppl 2), 136–140Google Scholar
  29. 29.
    Zhou, G., Minakawa, N., Githeko, A. K., & Yan, G. (2004). Association between climate variability and malaria epidemics in the East African highlands. Proceeding of the National Academy of Sciences, 101(8), 2375–2380CrossRefGoogle Scholar
  30. 30.
    Abeku, T. A., De Vlas, S. J., Borsboom, G. J., Tadege, A., Gebreyesus, Y., Gebreyohannes, H., Alamirew, D., Seifu, A., Nagelkerke, N. J. & Habbema, J. D. (2004). Effects of meteorological factors on epidemic malaria in Ethiopia: A statistical modelling approach based on theoretical reasoning. Parasitology, 128, 585–593CrossRefGoogle Scholar
  31. 31.
    Craig, M. H., Kleinschmidt, I., Nawn, J. B., Le Sueur, D. & Sharp, B. L. (2004). Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: Part I. The impact of climatic factors. Tropical Medicine and International Health, 9, 1247–1257CrossRefGoogle Scholar
  32. 32.
    Githeko, A. K., & Ndegwa, W. (2001). Predicting malaria epidemics using climate data in Kenyan highlands: A tool for decision makers. Global Change and Human Health, 2, 54–63CrossRefGoogle Scholar
  33. 33.
    Loevinsohn, M. E. (1994). Climate warming and increased malaria in Rwanda. The Lancet, 343, 714–748CrossRefGoogle Scholar
  34. 34.
    Freeman, T. & Bradley, M. (1996). Temperature is predictive of severe malaria years in Ziambabwe. Transactions of the Royal Society of Tropical Medicine and Hygiene, 90, 232CrossRefGoogle Scholar
  35. 35.
    Kovats, R. S., Bouma, M. J., Hajat, S., Worrall, E. & Haines, A. (2003). El Nino and health. The Lancet, 362, 1481–1489CrossRefGoogle Scholar
  36. 36.
    Bouma, M. J. (2003). Methodological problems and amendments to demonstrate effects of temperature on the epidemiology of malaria. A new perspective on the highland epidemics in Madagascar, 1972–89. Transactions of the Royal Society of Tropical Medicine and Hygiene, 97, 133–139CrossRefGoogle Scholar
  37. 37.
    Uddenfeldt Wort, U., Hastings, I. M., Carlstedt, A., Mutabingwa, T. & Brabin, B. J. (2004). Impact of El Nino and malaria on birth weight in two areas of Tanzania with different malaria transmission patterns. International Journal of Epidemiology, 33, 1311–1319CrossRefGoogle Scholar
  38. 38.
    Fontaine, R. S. Najjar, A. & Prince, J. S. (1961). The 1958 malaria epidemic in Ethiopia. American Journal of Tropical Medicine and Hygiene, 10, 795–803Google Scholar
  39. 39.
    Lindsay, S. W. & Martens, W. J. M. (1998). Malaria in the African highlands: Past, present and the future. Bulletin of the World Health Organization, 76, 33–45Google Scholar
  40. 40.
    Thomson, M. C., Connor, S. J., Ward, N. & Molyneux, D. (2004). Impact of climate variability on infectious disease in West Africa. EcoHealth Journal, 1, 138–150CrossRefGoogle Scholar
  41. 41.
    Warsame, M., Wernsdofer, W. H., Huldt, G. & Bjorkman, A. (1995). An epidemic of Plasmodium falciparum malaria in Balcad Somalia, and its causation. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98, 142–145CrossRefGoogle Scholar
  42. 42.
    Connor, S. J., Thomson, M. C. & Molyneux, D. H. (1999) Forecasting and prevention of epidemic malaria: New perspectives on an old problem. Parassitologia, 41, 439–448Google Scholar
  43. 43.
    Lusingu, J. P., Vestergaard, L. S., Mmbando, B. P., Drakeley, C. J., Jones, C., Akida, J., Savaeli, Z. X., Kitua, A. Y., Lemnge, M. M. & Theander, T. G. (2004). Malaria morbidity and immunity among residents of villages with different Plasmodium falciparum transmission intensity in North-Eastern Tanzania. Malaria Journal, 3, 26–37CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Tanser, F. C., Sharp, B. & le Sueur, D. (2003). Potential effect of climate change on malaria transmission in Africa. The Lancet, 362(9398), 1792–1798CrossRefGoogle Scholar
  46. 46.

Copyright information

© Springer 2007

Authors and Affiliations

  • Andrew K. Githeko
    • 1
  1. 1.Climate and Human Health Research UnitKenya Medical Research Institute, Centre for Vector Biology and Control ResearchKenya

Personalised recommendations