A 200-year historical modeling of catchment nutrient changes in Taihu basin, China

  • Ge YuEmail author
  • Bin Xue
  • Geying Lai
  • Feng Gui
  • Xiaomei Liu
Part of the Developments in Hydrobiology book series (DIHY, volume 194)


Sedimentary records provide important information for understanding changes in the history of eutrophication in Lake Taihu. In addition, the catchment nutrient model SWAT provides a powerful tool to examine eutrophic changes in a long-term context. Since it is difficult to evaluate impacts of natural eutrophic development and anthropogenic changes in catchment discharge and land use, simulation of past changes provides a mirror on processes and dynamics. Boundaries in the simulations are set to a preindustrial time to evaluate natural-agricultural nutrient changes in Taihu Basin a 100 years ago. Total nitrogen (TN) and total phosphorus (TP) in the main channel flowing into the lake are simulated in four sub-basins for 200 model years. Results show that modeling can capture basic features of basin nutrient development, where mean TN concentration (0.12 mg l−1) can be compared in broad scale to mean TN concentration (0.17 mg kg−1) from Lake Taihu sedimentary cores dating back about 100 years. Spatial nutrient simulations suggest that the two major nutrient sources are from the southwestern sub-basin (48% TN and 68% TP of the basin total) and the northwestern sub-basin (18% TN and 17% TP). There are differences of +7.3 × 104 kg TN and +2.0 × 105 kg TP between total input and output values, simulating mean annual amounts of nutrient deposited into the lake. TN and TP concentration differences between input and output sub-basins become smaller in the second 100 years than the first 100 years, suggesting a 100 year period to reach a balance of net nutrients. Catchment nutrient modeling provides a basis to evaluate how nutrient production and balance responded to environmental changes over 200 years in Taihu Basin.


Natural-agricultural environment TN and TP simulations Nutrient change Decadal-centurial time scale Taihu Basin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, J. G., R. Srinivasan, R. S. Muttiah & J. R. Williams, 1998. Large area hydrologic modeling and assessment part I: model development. Journal of American Water Resources Association 34:73–89.CrossRefGoogle Scholar
  2. Bi, Y. Y., 1995. Farmland in China. Agricultural Science and Technology Press, Beijing, 231 (in Chinese).Google Scholar
  3. Bradbury, J. P., S. M. Colman & R. L. Reynolds, 2004. The history of recent limnologic changes and human impact on Upper Klamath Lake, Oregon. Journal of Paleolimnology 31: 151–165.CrossRefGoogle Scholar
  4. Chinese Academy of Sciences, 1988. Physical Geography of China. Biogeography Science Press, Beijing, 318 (in Chinese).Google Scholar
  5. Di Luzio, M., R. Srinivasan, J. G. Arnold & S. L. Neitsch, 2002a. Soil and Water Assessment Tool. ArcView GIS Interface Manual: Version 2000. GSWRL Report 02-03, BRC Report 02-07, Published by Texas Water Resources Institute TR-193, College Station, TX, 346.Google Scholar
  6. DiLuzio, M., R. Srinivasan & J. G. Arnold, 2002b. Integration of watershed tools and SWAT model into basins. Journal of the American Water Resources Association 38: 1127–1141.CrossRefGoogle Scholar
  7. Hou, X. Y., S. Z. Sun, J. W. Zhang, M. G. He, Y. F. Wang, D. Z. Kong & S. Q. Wang, 1982. Vegetation Map of the People’s Republic of China. China Cartography, Beijing (in Chinese).Google Scholar
  8. Huang, Y. P., C. F. Fan, W. M. Pu, J. H. Jiang & D. Y. Dai, 2001. Water Environments of Lake Taihu and Controlling the Pollution. Science Press, Beijing, 298 (in Chinese).Google Scholar
  9. Institute of Soil Science of Chinese Academy of Sciences, 1986. The Soil Atlas of China (1:14,000,000). Cartographic Publishing House, Beijing (in Chinese).Google Scholar
  10. Jin, X. C., H. L. Liu, Q. Y. Tu, Z. S. Zhang & X. Zhu, 1990. Lake Eutrophications of China. Chinese Environment Press, Beijing, 614 (in Chinese).Google Scholar
  11. Last, W. M. & J. P. Smol, 2001. Tracking Environmental Change Using Lake Sediments, Volume 1, Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, 548.Google Scholar
  12. Liu, E. F., J. Shen, S. C. Yao & B. Xue, 2004a. Analysis of heavy metal element sources in surface sediment of Lake Taihu. Journal of Lake Sciences 16: 113–119 (in Chinese).Google Scholar
  13. Liu, E. F., J. Shen, Y. X. Zhu, W. L. Xia, H. X. Pan & Z. D. Jin, 2004b. Heavy metals and nutrients pollution in sediments of Taihu Lake. Acta Sedimentologica Sinica 22: 507–512 (in Chinese).CrossRefGoogle Scholar
  14. Lu, Y. R. & G. D. Gao, 1984. Atlas of Atmosphere-Hydrology Climate of China. Meteorology Press, Beijing, 183 (in Chinese).Google Scholar
  15. National GIS Center of China, 1999. Data Base of 1:2,500,000 topography of China, Beijing.Google Scholar
  16. National Meteorology Center of China, 2001. Annual Meteorological Observation Report in land surface of China, Beijing (in Chinese).Google Scholar
  17. National Soil Survey Office of China, 1993–1997. Soils in China. Agricultural Publishing House: Beijing, 1–6 (in Chinese).Google Scholar
  18. Qin, B. Q, 2002. Eutrophication of shallow water lakes in the mid-lower reaches of Changjiang and their controlling strategy. Journal of Lake Sciences 14: 193–202 (in Chinese).Google Scholar
  19. Qin, B. Q., W. P. Hu & G. Gao, 2004. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chinese Science Bulletin 49: 54–64.CrossRefGoogle Scholar
  20. Ramstack, J. M., S. C. Fritz, D. R. Engstrom & S. A. Heiskary, 2003. The application of a diatom-based transfer function to evaluate regional water-quality trends in Minnesota since 1970. Journal of Paleolimnology 29: 79–94.CrossRefGoogle Scholar
  21. Rose, N. L., J. F. Boyle, Y. Du, C. Yi, X. Dai, P. G. Appleby, H. Bennion, S. Cai & L. Yu, 2004. Sedimentary evidence for changes in the pollution status of Taihu in the Jiangsu region of eastern China. Journal of Paleolimnology 32: 41–51.CrossRefGoogle Scholar
  22. Rosenberg, N. J., D. L. Epstein, D. Wang, L. Vail, R. Srinivasan & J. G. Arnold, 1999. Possible impacts of global warming on the hydrology of the Ogallala aquifer region. Journal of Climate 42: 677–692.Google Scholar
  23. Schulze, R. E., 2000. Modelling hydrological responses to land use and climate change: a southern african perspective. AMBIO 29: 12–22.CrossRefGoogle Scholar
  24. Shi, X. Z. & D. S. Yu, 2002. A framework for the 1:1,000,000 soil database of China. In Warner, E. D. & G. W. Peterson (eds), Proceedings of the 17th World Congress of Soil Science, Bangkok, 1757: 1–5.Google Scholar
  25. Shi, X. Z., D. S. Yu, X. Z. Pan, W. X. Sun, H. J. Wang & Z. T. Gong, 2003. The 1:1,000,000 China Soil Database and the Application. The Proceedings of China Soil Science Congress (in Chinese).Google Scholar
  26. Smol, J. P., 2002. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. London, Arnold Publishers, New York, 280.Google Scholar
  27. Sun, S. C. & Y. P. Huang, 1993. Lake Taihu. Ocean Press, Beijing, 273 (in Chinese).Google Scholar
  28. Wang, J., Y. J. Wang & J. L. Liu, 1996. Evolution of sedimentary environment in Lake Taihu during the last 16,000 years. Acta Palaeontologica Sinica 35: 213–223 (in Chinese).Google Scholar
  29. Wang, Z. G., C. M Liu & X. F. Wu, 2003. A perspective for the DEM-based hydrological catchment model. Journal of Natural Resources 18: 168–173 (in Chinese).Google Scholar
  30. Xia, L. Z. & L. Z. Yang, 2003. Studying and controlling for catchment — sourced pollutions in Lake Taihu. Resources and Environments in the Changjiang Catchment 12: 45–49 (in Chinese).Google Scholar
  31. Xue, B., W. C. Qu, Y. H. Wu, S. M. Wang & R. J. Wu, 1998. Sedimentological record of paleoenvironment of Lake Taihu in Late-Glacial to Holocene. Journal of Lake Sciences 10: 30–36 (in Chinese).Google Scholar
  32. Yu, G., X. Chen, J. Ni, R. Cheddadi, J. Guiot, H. Han, S.P. Harrison, C. Huang, M. Ke, Z. Kong, S. Li, W. Li, P. Liew, G. Liu, J. Liu, Q. Liu, K. B. Liu, I. C. Prentice, W. Qui, G. Ren, C. Song, S. Sugita, X. Sun, L. Tang, E. Van Campo, Y. Xia, Q. Xu, S. Yan, X. Yang, J. Zhao & Z. Zheng, 2000. Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. Journal of Biogeography 27: 635–664.CrossRefGoogle Scholar
  33. Zhang, W. R., 1998. Soil Conditions of the Dominant Plants in the Forest of China. China Science and Technique Press, Beijing, 432 (in Chinese).Google Scholar
  34. Zhang, Y. L., B. Q. Qin & F. Q. Huang, 2002. Evolution and zonal analysis on lake eutrophication in East Plain Region. Shanghai Environmental Sciences 21: 549–553 (in Chinese).Google Scholar
  35. Zheng, Y. Q., G. Yu & S. M. Wang, 2003. Numerical climate modeling since the last 140 years by RegMC2 for East Asia. Progresses of Natural Sciences 13: 951–956 (in Chinese).CrossRefGoogle Scholar
  36. Zui, D. C., H. S. Liu, J. R. Min & J. M. He, 1984. Atlas of Climatic Resources for Major Crops in China (1:17,000,000). Meteorological Press, Beijing (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ge Yu
    • 1
    Email author
  • Bin Xue
    • 1
  • Geying Lai
    • 1
  • Feng Gui
    • 1
  • Xiaomei Liu
    • 1
  1. 1.Nanjing Institute of Geography & LimnologyChinese Academy of SciencesNanjingChina

Personalised recommendations