Advertisement

The effects of different electron donors on anaerobic nitrogen transformations and denitrification processes in Lake Taihu sediments

  • Donghong Wang
  • Qinghui Huang
  • Chunxia Wang
  • Mei Ma
  • Zijian WangEmail author
Part of the Developments in Hydrobiology book series (DIHY, volume 194)

Abstract

Nitrogen transformations in anaerobic sediments and leachate in Lake Taihu were simulated in the laboratory. Ammonium, nitrate and nitrite were analyzed after incubation under anaerobic conditions. Different reductive states and pH values were obtained by using different electron donors, such as glucose, sucrose, potato starch and sodium acetate. Chemical nitrogen transformation mechanisms were discussed relative to physico-chemical properties of lake sediment. Results demonstrated that nitrogen transformations in anaerobic conditions supplemented with different electron donors varied, and supplementation with certain electron donors may enhance nitrogen removal from anaerobic sediments. Among the four electron donors studied, higher nitrogen removal efficiencies were observed with acetate and starch. Saccharides, such as glucose, sucrose and starch, stimulate nitrate reduction to nitrite, while acetate stimulates nitrate reduction to ammonium.

Keywords

Electron donor Anaerobic Nitrogen Transformation Sediment Lake Taihu 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APHA, AWWA & WEF, 1998a. 4500-NO2-B Colorimetric Method. Standard Methods for the Examination of Water and Wastewater, 20th edn.Google Scholar
  2. APHA, AWWA & WEF, 1998b. Persulfate Method. Standard Methods for the Examination of Water and Wastewater, 20th edn, 4500-N C: 4–102.Google Scholar
  3. Bae, H.-S., T. Yamagishi & Y. Suwa, 2004. An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate-degrading denitrifying population utilizing versatile electron donors and acceptors. Chemosphere 55: 93–100.PubMedCrossRefGoogle Scholar
  4. Boicourt, W. C., W. R. Boynton, T. M. Church, D. M. Ditoro, R. Elmgren, J. H. Garber, A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson & S. P Seitzinger, 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35: 141–180.CrossRefGoogle Scholar
  5. Boopathy, R., 1994. Transformation of nitroaromatic compounds by a methanogenic bacterium, Methanococcus sp. strain B. Archives of Microbiology 162:167–172.CrossRefGoogle Scholar
  6. Boyd, S. R., 2001. Nitrogen in future biosphere studies. Chemical Geology 176: 1–30.CrossRefGoogle Scholar
  7. Brunet, R. C. & L. J. Garcia-Gil, 1996. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiology Ecology 21: 131–138.CrossRefGoogle Scholar
  8. Cao, X., Y. Chen, X. R. Wang & X. H. Deng, 2001. Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere 44: 655–661.PubMedCrossRefGoogle Scholar
  9. Cervantes, F., O. Monroy & J. Gómez, 1999. Influence of ammonium on the performance of a denitrifying culture under heterotrophic conditions. Applied Biochemistry and Biotechnology 81: 13–23.PubMedCrossRefGoogle Scholar
  10. Cervantes, F. J., A. David De la Rose & J. Gómez, 2001. Nitrogen removal from wastewater at low C/N ratios with ammonium and acetate as electron donors. Bioresource Technology 79: 165–170.PubMedCrossRefGoogle Scholar
  11. Devlin, J. F., R. Eedy & B. J. Butler, 2000. The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer. Journal of Contaminant Hydrology 46:81–97.CrossRefGoogle Scholar
  12. Gerlach, R., M. Steiof, C. L. Zhang & J. B. Hughes, 1999. Low aqueous solubility electron donors for the reduction of nitroaromatics in anaerobic sediments. Journal of Contaminant Hydrology 36: 91–104.CrossRefGoogle Scholar
  13. Graaf, A., P. Bruijin, L. A. Robertson, M. S. M. Jetten & J. G. Kuenen, 1996. Autotrophic growth of anaerobic, ammonium-oxidizing microorganisms in a fluidized bed reactor. Microbiology 142: 2187–2196.CrossRefGoogle Scholar
  14. Islas-Limaa, S., F. Thalassoa & J. Gómez Hernandezb, 2004. Evidence of anoxic methane oxidation coupled to denitrification. Water Research 38: 13–16.CrossRefGoogle Scholar
  15. Pu, P. M., W. P. Hu, G. X. Wang, S. Z. Zhang, C. G. Hu & J. S. Yan, 1998a. The new strategy for improving the aqua-ecological environmental in Taihu Lake Basin, China. How can we solve the problem of lack of qualified water and deterioration of environment and natural resources in Taihu Lake basin. Journal of Lake Science 10: 47–58 [Suppl].Google Scholar
  16. Pu, P. M., W. P. Hu, J. S. Yan, G. X. Wang & C. G. Hu, 1998b. A physico-ecological engineering experiment for water treatment in a hypertrophic lake in China. Ecologied Engineering 10: 179–190CrossRefGoogle Scholar
  17. Preuss, A., J. Fimpel & G. Diekert, 1993. Anaerobic transformation of 2,4,6-trinitrotoluene TNT. Archives of Microbiology 159: 345–353.PubMedCrossRefGoogle Scholar
  18. Qin, B. Q, P. Z. Xu, Q. L. Wu, L. C. Luo & Y. L. Zhang, 2007. Environmental Issues of Lake Taihu, China. Hydrobiologia 581: 3–14.CrossRefGoogle Scholar
  19. Roberts, D. J., S. Pendharkar & F. Ahmad, 1995. Factors Affecting TNT Degradation by Anaerobic Consortia. Platform-Presentation, 3rd International Symposium on In Situ and On-site Bioreclamation. San Diego, CA, April 24–27.Google Scholar
  20. Schmidt, I., O. Sliekers, M. Schmid, E. Bock, J. Fuerst, J. G. Kuenen, S. M. Jetten & M. Strous, 2003. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiology Reviews 27: 481–492.PubMedCrossRefGoogle Scholar
  21. Song, J. M., Y. Li & Z. Zhu, 1990. Relationship between Eh value and redox environment in marine sediments. Marine Science Bulletin 9(4): 33–39.Google Scholar
  22. Sorensen, J., 1978. Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment. Applied & Environmental Microbiology 35: 301–305.Google Scholar
  23. Standard method of People’s Republic of China, 1987. Water quality-determination of ammonium-spectrophotometric method with salicylic acid, GB 7481–87:211.Google Scholar
  24. Stevens, R. J., R. J. Laughlin & J. P. Malone, 1998. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biology and Biochemistry 30:1119–1126.CrossRefGoogle Scholar
  25. Stumm, W., J. J. Morgan, 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edn. John Wiley, Sons, Inc.Google Scholar
  26. Terra, W. R. & R. Regel, 1995. pH buffering in Musca domestica midguts, comparative biochemistry and physiology Part A. Physiology 112: 559–564.Google Scholar
  27. Tiedje, J. M., 1982. Denitrification. In Page, A. L. (ed.), Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties. 2nd edn. ASA-ASSA, Madison, WI, 1011–1026.Google Scholar
  28. Tiedje, J. M., A. J. Sexstone, D. D. Myrold & J. A. Robinson, 1982. Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek Journal of Microbiology 48: 569–583.CrossRefGoogle Scholar
  29. Wang, K. X., 2001. Aquatic chemistry, Beijing: Chemical Industry Press, Ch.6, Oxidation and Reduction Chemistry, 207 pp.Google Scholar
  30. Yu, H., M. Amann, T. Hansson, J. Köhler, G. Wich & W. F. van Gunsterena, 2004. Effect of methylation on the stability and solvation free energy of amylose and cellulose fragments: a molecular dynamics study. Carbohydrate Research 339: 1697–1709.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Donghong Wang
    • 1
  • Qinghui Huang
    • 1
  • Chunxia Wang
    • 1
  • Mei Ma
    • 1
  • Zijian Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental SciencesChinese Academy of SciencesHaidian District, BeijingChina

Personalised recommendations