Total inputs of phosphorus and nitrogen by wet deposition into Lake Taihu, China

  • Liancong Luo
  • Boqiang QinEmail author
  • Longyuan Yang
  • Yuzhi Song
Part of the Developments in Hydrobiology book series (DIHY, volume 194)


Lake Taihu suffers from eutrophication caused by riverine nutrient inputs and air deposition. To characterize wet deposition of phosphorus (P) and nitrogen (N) to the lake, precipitation collection and measurements of total phosphorus (TP) and total nitrogen (TN) and other components at five cities around Lake Taihu were made from July 2002 to June 2003. TP and TN concentrations and deposition rates exhibited strong spatial variation in the whole catchment. An inverse correlation between station- averaged TP and TN concentrations and precipitation amount was found. Maximal TP concentration in rainfall was found in Suzhou, and maximal TN in Wuxi. However, highest wet deposition rates of TP and TN were found in Suzhou, which suggests that atmospheric nutrients are mostly from the east and northwest area of Lake Taihu. Mean TP and TN deposition rates were 0.03 and 2.0 t km−2 year−1 respectively in Lake Taihu, which are greater than reported values in other areas by comparision. Total N and P contributed to the lake by wet deposition were 75 and 4720 t per year, respectively, which represent about 7.3% and 16.5% of total annual N and P inputs via inflow rivers. Wet deposition, especially N, could have significant effects on eutrophication in the lake, which shows that air deposition should be taken into account while reducing the external nutrients in the lake.


Nitrogen Phosphorus Wet deposition Eutrophication Riverine inputs Lake Taihu 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J. D., A. Magill, S. G. McNulty, R. D. Boone, K. J. Nadelhoffer, M. Downs & R. Hallett, 1995. Forest biogeochemistry and primary production altered by nitrogen saturation. Water, Air and Soil Pollution 85: 1665–1670.CrossRefGoogle Scholar
  2. Bailey, M. C. & D. P. Hamilton, 1997. Wind induced sediment resuspension: a lake-wide model. Ecological Modeling 99: 217–228.CrossRefGoogle Scholar
  3. Bergametti, G., E. Remoudaki, R. Losno & E. Steiner, 1992. Source, transport and deposition of atmospheric phosphorus over the northwestern Mediterranean. Journal of Atmospheric Chemistry 14: 501–513.CrossRefGoogle Scholar
  4. Blom, G. & H. J. Winkels, 1998. Modeling sediment accumulation and dispersion of contaminants in Lake Ijsselmeer (the Netherlands). Journal of Environmental Management 37: 17–24.Google Scholar
  5. Brown, G., D. T. Mitchell & W. D. Stock, 1984. Atmospheric deposition of phosphorus in a Coastal Fynbos Ecosystem of the southwestern cape, South-Africa. Journal of Ecology 72(2): 547–551.CrossRefGoogle Scholar
  6. Buijsman, E. & J. W. Erisman, 1988. Wet deposition of ammonium in Europe. Journal of Atmospheric Chemistry 6: 265–280.CrossRefGoogle Scholar
  7. Burn, D. A., 2003. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming — a review and new analysis of past study results. Atmospheric Environment 37: 921–932.CrossRefGoogle Scholar
  8. Chang, Y. B., 1995. Major environmental changes since 1950 and the onset of accelerated eutrophication in Taihu Lake, China. Acta Palaeontologica Sinica 35: 155–174 (in Chinese).Google Scholar
  9. Chen, H. S., 2002. Analysis of water environmental changes in Taihu Basin. Journal of Lake Sciences 14: 111–116 (in Chinese).Google Scholar
  10. Chen, J. M., G. X. Pan, L. Cang, J. J. Yang & J. H. Wang, 2000. Effect of simulated acid rain on plant growth and paddy soils pH in Taihu area. Journal of Nanjing Agricultural University 23: 116–118 (in Chinese).Google Scholar
  11. Chen, J. M., G. X. Pan & J. W. Zheng, 2001. Effect of simulated acid rain on adsorption and desorption of copper by paddy soils in Lake Taihu area. Acta Pedologica Sinica 38: 333–340 (in Chinese).Google Scholar
  12. Chen, L., R. Arimoto & R. A. Duce, 1985. The sources and forms of phosphorus in marine aerosol — particles and rain from Northern New Zealand. Atmospheric Environment 19(5): 779–787.CrossRefGoogle Scholar
  13. Chen, X. M., Q. R. Shen & G. X. Pan, 2003. Characteristics of nitrate horizontal transport in a paddy field of the Tai Lake region, China. Chemosphere 50: 703–706.PubMedCrossRefGoogle Scholar
  14. Coale, K. H. & K. W. Bruland, 1990. Spatial and temporal variability in copper complexation in the North Pacific. Deep-sea Research 34: 317–336.CrossRefGoogle Scholar
  15. Cowling, E. B. & J. Nilsson, 1995. Acidification research: lessons from history and visions of environmental futures. Water, Air and Soil Pollution 85: 279–292.CrossRefGoogle Scholar
  16. De Leeuw, G., L. Spokes, T. Jickells, C. A. Skjoth, O. Hertel, E. Vigniti, S. Tamm, M. Schulz, L. L. Sorensen, B. Pedersen, L. Klein & K. H. Schlunzen, 2003. Atmospheric nitrogen inputs into the North Sea: effect on productivity. Continental Shelf Research 23: 1743–1755.CrossRefGoogle Scholar
  17. Feng, K., B. Y. Yu, D. M. Ge, M. H. Wong, X. C. Wang & Z. H. Cao, 2003. Organo-chlorine pesticide (DDT and HCH) residues in the Taihu Lake Region and its movement in soil — water system I. Field survey of DDT and HCH residues in ecosystem of the region. Chemosphere 50: 683–687.PubMedCrossRefGoogle Scholar
  18. Fenn, M. E., M. A. Poth, J. D. Aber, J. S. Baron, B. T. Bormann, D. W. Johnson, A. D. Lemly, S. D. McNulty, D. F. Ryan & R. Stottlemyer, 1998. Nitrogen excess in North American ecosystems: a review of predisposing factors, geographic extent, ecosystem responses and management strategies. Ecological Applications 8: 706–733.CrossRefGoogle Scholar
  19. Filoso, S., M. R. Williams & J. M. Melack, 1999. Composition and deposition of throughfall in a flooded forest archipelago (Negro River, Brazil). Biogeochemistry 45(2): 169–195.Google Scholar
  20. Fu, J. M. & J. W. Winchester, 1994. Sources of nitrogen in 3 watersheds of Northern Florida, USA — mainly atmospheric deposition. Geochimica et Cosmochimica Acta 58: 1581–1590.CrossRefGoogle Scholar
  21. Furumai, H., T. Kondo & S. Ohgaki, 1989. Phosphorus exchange kinetics and exchangeable phosphorus forms in sediments. Water Research 23: 685–691.CrossRefGoogle Scholar
  22. Gao, Y., 2002. Atmospheric nitrogen deposition to Barnegat Bay. Atmospheric Environment 36: 5783–5794.CrossRefGoogle Scholar
  23. Gibson, C. E., Y. Wu & D. Pinkerton, 1995. Substance budgets of an upland catchment-the signi.cance of atmospheric phosphorus inputs. Freshwater Biology 33: 385–392.CrossRefGoogle Scholar
  24. Gordon, A. G. & E. Gorham, 1963. Ecological aspects of air pollution from an iron-sintering plant at Wawa, Ontario. Canadian Journal of Botany 41: 1063–1078.CrossRefGoogle Scholar
  25. Gorham, E., 1998. Acid deposition and its ecological effects: a brief history of research. Environmental Science & Policy 1: 153–166.CrossRefGoogle Scholar
  26. Helmers, E. & O. Schrems, 1995. Wet deposition of metals to the tropical north and the south Atlantic Ocean. Atmospheric Environment 29: 2475–2484.CrossRefGoogle Scholar
  27. Hertel, O., C. Ambelas Skjoth, L. M. Frohn, E. Vignati, J. Frydendall, G. De Leeuw, U. Schwarz & S. Reis, 2002. Assessment of the atmospheric nitrogen inputs into the North Sea using a Lagrangian model. Physics and Chemistry of the Earth 27: 1507–1515.Google Scholar
  28. James, R. T., J. Martin, T. Wool & P. F. Wang, 1997. A sediment resuspension and water quality model of Lake Okeechobee. Journal of the American Water Resources Association 33: 661–680.CrossRefGoogle Scholar
  29. Khemani, L. T., G. A. Momin, P. S. P. Rao, P. D. Safai, G. Singh & R. K. Kapoor, 1989. Spread of acid rain over India. Atmospheric Environment 23: 757–762.CrossRefGoogle Scholar
  30. Lawrence, G. B., D. A. Goolsby, W. A. Battaglin & G. J. Stensland, 2000. Atmospheric nitrogen in the Mississippi River Basin — emissions, deposition and transport. The Science of the Total Environment 248: 87–99.PubMedCrossRefGoogle Scholar
  31. Likens, G. E., 1989. Some aspects of air pollutant effects on terrestrial ecosystems and prospects for the future. AMBIO 14: 9–14.Google Scholar
  32. Lin, C., M. D. Melville, M. M. Islam, B. P. Wilson, X. Yang & P. Van Oploo, 1998. Chemical controls on acid discharges from acid sulfate soils under sugarcane cropping in an eastern Australian estuarine floodplain. Environmental Pollution 103: 269–276.CrossRefGoogle Scholar
  33. Lindberg, S. E., M. Bredemeier, D. A. Schafer & L. Qi, 1990. Atmospheric concentrations and deposition of nitrogen and major ions in conifer forests in the United States and Federal Republic of Germany. Atmospheric Environment 24: 2207–2220.Google Scholar
  34. Lovett, G. M. & J. D. Kinsman, 1990. Atmospheric pollutant deposition to high-elevation ecosystems. Atmospheric Environment 24: 2767–2786.Google Scholar
  35. Luo, L. C., 2004. Hydrodynamics and its effects on aquatic environment in Lake Taihu, Ph.D thesis, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences.Google Scholar
  36. Migon, C. & V. Sandroni, 1999. Phosphorus in rainwater: partitioning inputs and impact on the surface coastal ocean. Limnology and Oceanography 44(4): 1160–1165.CrossRefGoogle Scholar
  37. Morel, F. M. M., R. J. M. Hudson & N. M. Price, 1991. Limitation of productivity by trace metals in the sea. Limnology & Oceanography. 36: 1742–1755.CrossRefGoogle Scholar
  38. Okochi, H., H. Kameda, S. Hasegawa, N. Saito, K. Kubota & M. Igawa, 2000. Deterioration of concrete structures by acid deposition an assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens. Atmospheric Environment 34: 2937–2945.CrossRefGoogle Scholar
  39. Owens, N. J. P., N. J. Galloway & R. A. Duce, 1992. Episodic atmospheric nitrogen deposition on oligotrophic oceans. Nature 357: 397–399.CrossRefGoogle Scholar
  40. Peart, M. R., 2000. Acid rain, storm period chemistry and their potential impact on stream communities in Hong Kong. Chemosphere 41: 25–31.PubMedCrossRefGoogle Scholar
  41. Poelma, C. & G. Ooms, 2002. Influence of hydrodynamic interactions between particles on the turbulent flow in a suspension. Experimental Thermal and Fluid Sciences 26: 653–659.CrossRefGoogle Scholar
  42. Pollman, C. D., W. M. Landing, J. J. Perry, Jr & T. Fitzpatrick, 2002. Wet deposition of phosphorus in Florida. Atmospheric Environment 36: 2309–2318.CrossRefGoogle Scholar
  43. Pu, P. M., W. P. Hu, J. S. Yan, G. X. Wang & C. H. Hu, 1998. A physico-ecological engineering experiment for water treatment in a hypertrophic lake in China. Ecological Engineering 10: 179–190.CrossRefGoogle Scholar
  44. Qin, B. Q., W. P. Hu, G. Gao, L. C. Luo & J. S. Zhang, 2004. The Dynamics of resuspension and conceptual mode of nutrient releases from sediments in large shallow Lake Taihu, China. In Chinese Sciences Bulletin 49: 54–64.CrossRefGoogle Scholar
  45. Qin, B. Q., 1998. A review and prospect about the aquatic environment studies in Lake Taihu. Journal of Lake Sciences 10: 1–9 (in Chinese).Google Scholar
  46. Qu, W. C., M. Dickman, C. X. Fan, S. M. Wang, W. C. Su, L. Zhang & H. X. Zou, 2002. Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in Lake Taihu sediments, China. Hydrobiologia 485: 163–171.CrossRefGoogle Scholar
  47. Qu, W. C., M. Dickman & S. M. Wang, 2001. Multivariate analysis of heavy metal and nutrient concentrations in sediments of Lake Taihu, China. Hydrobiologia 450: 83–89.CrossRefGoogle Scholar
  48. Raper, D. W. & D. S. Lee, 1996. Wet deposition at the sub-20 km scale in a rural upland area of England. Atmospheric Environment 30: 1193–1207.CrossRefGoogle Scholar
  49. Shen, J. H., B. Gutendorf, H. H. Vahl, L. Shen & J. Westendorf, 2001. Toxicological profile of pollutants in surface water from an area in Taihu Lake, Yangtze Delta. Toxicology 166: 71–78.PubMedCrossRefGoogle Scholar
  50. Sheng, Y. P. & W. Lick, 1979. The transport and resuspension of sediments in a shallow lake. Journal of Geophysical Research 84: 1809–1826.Google Scholar
  51. Shrestha, P. L., 1996. An integrated model suite for sediment and pollutant transport in shallow lake. Advances in Engineering Software 27: 201–212.CrossRefGoogle Scholar
  52. Spokes, L., T. Jickells, A. Rendell, M. Schulz, A. Rebers, W. Dannecker, O. Kruger, M. Leermakers & W. Baeyens, 1993. High atmospheric nitrogen deposition events over the North Sea. Marine Pollution Bulletin 26: 689–703.CrossRefGoogle Scholar
  53. Stoddard, J. L., 1994. Long-term changes in watershed retention of nitrogen. In Baker, L. A. (ed.), Environmental Chemistry of Lakes and Reservoirs. American Chemical Society Advances in Chemistry 227: 223–284.Google Scholar
  54. Sunda, W. G. & S. A. Huntsman, 1992. Feedback interactions between zinc and phytoplankton in seawater. Limnology & Oceanography 37: 9–40.CrossRefGoogle Scholar
  55. Swap, R., M. Garstang, S. Greco, R. Talbot & P. Kallberg, 1992. Saharan dust in the Amazon Basin. Tellus, Series B. Chemical and Physical Meteorology 44: 133–149.CrossRefGoogle Scholar
  56. Tarnay, L., A. W. Gertler, R. R. Blank & G. E. Taylor, Jr, 2001. Preliminary measurements of summer nitric acid and ammonia concentrations in the Lake Tahoe Basin air-shed: implications for dry deposition of atmospheric nitrogen. Environmental Pollution 113: 145–153.PubMedCrossRefGoogle Scholar
  57. Vasjari, M., A. Merkoci & S. Alegret, 2000. Potentiometric characterisation of acid rains using corrected linear plots. Analytica Chimica Acta 405: 173–178.CrossRefGoogle Scholar
  58. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. G. Tilman, 1997. Human alternation of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737–750.Google Scholar
  59. Wang, G. X., P. M. Pu, S. Z. Zhang, W. C. Li, W. P. Hu & C. H. Hu, 1998. The purification of artificial complex ecosystem for local water in Lake Taihu. China Environmental Science 18: 410–414 (in Chinese).Google Scholar
  60. Wright, R. F., T. Dahl, E. T. Gjessing, G. R. Hendrey, A. Henriksen, M. Johannessen & I. P. Muniz, 1976. Impact of acid precipitation on freshwater ecosystems in Norway. Water, Air and Soil Pollution 6: 483–499.CrossRefGoogle Scholar
  61. Xu, P. Z & B. Q. Qin, 2005. Water quantity and pollutant fluxes of the surrounding rivers of Lake Taihu during the hydrological year of 2001–2002. Journal of Lake Sciences 17(3): 213–218 (in Chinese).Google Scholar
  62. Yang, L. Y., B. Q. Qin & R. J. Wu, 2001. Preliminary study for potential impacts on the aquatic environment of Lake Taihu by acid rain. Journal of Lake Sciences, 13: 135–142 (in Chinese).Google Scholar
  63. Yang, X. S., D. R. Miller & X. Xu, 1996. Spatial and temporal variations of atmospheric deposition in interior and coastal Connecticut. Atmospheric Environment 30: 3801–3810.CrossRefGoogle Scholar
  64. Yang, X. H., 2001. Acid rain and countermeasures in southern Lake Taihu. Journal of Huzhou Teachers College 23: 68–72 (in Chinese).Google Scholar
  65. Yang, Z. F., W. G. Shi, L. Q. Chen, Y. Chen & Z. L. Zhou, 2003. Ecological environmental succession and countermeasure of East Taihu. China Environmental Science 23: 64–68 (in Chinese).Google Scholar
  66. Yin, D. Q., Z. H. Wu, X. R. Wang & S. Yan, 1996. Algal growth potential as affected by lake water and phosphorus released from sediments in Lake Taihu. Journal of Nanjing University (Natural Sciences) 32(2): 253–260 (in Chinese).Google Scholar
  67. Zheng, Y., X. J. Wang & Y. C. Jiang, 2001. Water quality of the inflow rivers connected to Lake Taihu and totally inputted nutrients. Geography and Territorial Research 17: 40–44 (in Chinese).Google Scholar
  68. Zhou, Q. X. & Y. M. Zhu, 2003. Potential pollution and recommended critical levels of phosphorus in paddy soils of the southern Lake Tai area, China. Geoderma 115: 45–54.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Liancong Luo
    • 1
  • Boqiang Qin
    • 1
    Email author
  • Longyuan Yang
    • 1
  • Yuzhi Song
    • 1
  1. 1.Nanjing Institute of Geography & LimnologyChinese Academy of SciencesNanjingChina

Personalised recommendations