Advertisement

Phosphorus dynamics at multiple time scales in the pelagic zone of a large shallow lake in Florida, USA

  • Karl E. HavensEmail author
  • Kang-Ren Jin
  • Nenad Iricanin
  • R. Thomas James
Part of the Developments in Hydrobiology book series (DIHY, volume 194)

Abstract

Phosphorus (P) dynamics in large shallow lakes are greatly influenced by physical processes such as wind-driven sediment resuspension, at times scales from hours to years. Results from long-term (30 year) research on Lake Okeechobee, Florida (area 1,730 km2, mean depth 2.7 m) illustrate key features of these P dynamics. Variations in wind velocity result in changes in water column transparency, suspended solids, and total P (TP). In summer there are diurnal changes in TP associated with afternoon winds, and in winter, when strong winds occur for multiple days, monthly average TP remains high compared to summer. The magnitude of daily and seasonal TP changes can exceed 100 µg l−1. Hurricanes and tropical storms also cause extreme changes in TP that are superimposed on seasonal dynamics. When a hurricane passed 80 km south of the lake in October 1999, mean pelagic TP increased from 88 to 222 µg l−1. During large resuspension events, light attenuation is substantially increased, and this influences the biomass and spatial extent of submerged plants, as well as water column TP. In Lake Okeechobee, TP concentrations typically are ∼20 µg l−1 when submerged plants are dense, and soluble reactive P concentrations are reduced below detection, perhaps by the periphyton and plant uptake and by precipitation with calcium at high pH. In contrast, TP exceeds 50 µg l−1 when submerged plants and periphyton are absent due to prolonged deep water, and phytoplankton biomass and algal bloom frequency both are increased. In Lake Okeechobee and other large shallow lakes, complex models that explicitly consider wind-wave energy, hydrodynamics, and sediment resuspension, transport, and key biological processes are needed to accurately predict how lake water TP will respond to different management options.

Keywords

Phosphorus Shallow lakes Sediment resuspension Wind effects Physical processes Diffusion Eutrophication Long-term studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, F. J., E. J. Phlips & C. L. Schelske, 1995. The use of nutrient enrichment bioassays to test for spatial and temporal distribution of limiting factors affecting phytoplankton dynamics in Lake Okeechobee, Florida. Archiv für Hydrobiologie, Advances in Limnology 45: 177–190.Google Scholar
  2. Andersen, J. M., 1974. Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Hydrobiologia 74: 528–550.Google Scholar
  3. Aumen, N. G., 1995. The history of human impacts, lake management, and limnological research on Lake Okeechobee, Florida (USA). Archiv für Hydrobiologie, Advances in Limnology 45: 1–16.Google Scholar
  4. Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr., 1999. The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia 394: 219–232.CrossRefGoogle Scholar
  5. Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr., 2000. The potential for wave disturbance in shallow Florida lakes. Lake and Reservoir Management 16: 281–291.Google Scholar
  6. Bayley, S., V. Scotts, P. F. Springer & J. Stennis, 1978. Changes in submerged aquatic macrophyte populations at the head of Chesapeake Bay, 1958–1975. Estuaries 1: 171–182.CrossRefGoogle Scholar
  7. Brezonik, P. L. & D. R. Engstrom, 1998. Modern and historic accumulation rates of phosphorus in Lake Okeechobee, Florida. Journal of Paleolimnology 20: 31–46.CrossRefGoogle Scholar
  8. Burkholder, J. M., R. G. Wetzel & K. L. Klomparens, 1990. Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix. Applied and Environmental Microbiology 56: 2882–2890.PubMedGoogle Scholar
  9. Canfield, D. E. Jr. & M. V. Hoyer, 1988. The eutrophication of Lake Okeechobee. Lake and Reservoir Management 4: 91–99.Google Scholar
  10. Cerco C. F. & T. Cole, 1994. User’s guide to the CE-QUAL-ICM three-dimensional eutrophication model. Technical Report EL-95-15, Waterways Experiment Station, US Army Corps of Engineers, Vicksburg, Mississippi, USA.Google Scholar
  11. Caper, G. L. & R. W. Bachmann, 1984. Wind resuspension of sediments in a prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 41: 1763–1767.Google Scholar
  12. Cichra, M. F., S. Badylak, N. Henderson, B. H. Reuter & E. J. Phlips, 1995. Phytoplankton community structure in the open water zone of a shallow subtropical lake (Lake Okeechobee, Florida, USA). Archiv für Hydrobiologie, Advances in Limnology 45: 157–175.Google Scholar
  13. Clugston, J. P., 1963. Lake Apopka, Florida, a changing lake and its vegetation. Florida Academy of Science 26: 168–174.Google Scholar
  14. Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 1993. Restoration and management of lakes and reservoirs. Lewis Publishers, Florida, USA.Google Scholar
  15. Dierberg, F. E., 1992. The littoral zone of Lake Okeechobee as a source of phosphorus after drawdown. Environmental Management 6: 371–380.CrossRefGoogle Scholar
  16. Douglas, R. W., B. Rippey & C. E. Gibson, 2002. Interpreting sediment trap data in relation to the dominant redistribution process in a lake. Archiv für Hydrobiologie 155: 529–539.Google Scholar
  17. Fisher, M. M., K. R. Reddy & R. T. James, 2001. Long-term changes in the sediment chemistry of a large shallow subtropical lake. Lake and Reservoir Management 17: 217–232.Google Scholar
  18. Flaig, E. J. & K. E. Havens, 1995. Historical trends in the Lake Okeechobee ecosystem I. Land use and nutrient loading. Archiv für Hydrobiologie, Supplement 107: 1–24.Google Scholar
  19. Hakanson, L., 1982. Lake bottom dynamics and morphometry: the dynamic ratio. Water Resources Research 18: 1444–1450.CrossRefGoogle Scholar
  20. Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients, and chlorophyll in seven shallow lakes. Freshwater Biology 38: 159–168.CrossRefGoogle Scholar
  21. Hanlon, C. G., R. L. Miller & B. F. McPherson, 1999. Relationships between wind velocity and underwater irradiance in a shallow lake (Lake Okeechobee, Florida, USA). Journal of the American Water Resources Association 34: 951–961.CrossRefGoogle Scholar
  22. Hansson, L. A., 1990. Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshwater Biology 24: 265–273.CrossRefGoogle Scholar
  23. Harris, T. T., K. A. Williges & P. V. Zimba, 1995. Primary productivity and decomposition of five emergent macrophyte communities in the Lake Okeechobee marsh ecosystem. Archiv für Hydrobiologie, Advances in Limnology 45: 63–78.Google Scholar
  24. Havens, K. E., 1997. Water levels and total phosphorus in Lake Okeechobee. Lake and Reservoir Management 13: 16–25.Google Scholar
  25. Havens, K. E., 2002. Development and application of hydrologic restoration goals for a large subtropical lake. Lake and Reservoir Management 18: 285–292.Google Scholar
  26. Havens, K. E., 2003. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia 493: 173–186.CrossRefGoogle Scholar
  27. Havens, K. E., N. G. Aumen, R. T. James & V. H. Smith, 1996. Rapid ecological changes in a large subtropical lake undergoing cultural eutrophication. AMBIO 25: 150–155.Google Scholar
  28. Havens, K. E., H. J. Carrick, E. F. Lowe & M. F. Coveney, 1999. Contrasting relationships between nutrients, chlorophyll a, and Secchi transparency in two shallow subtropical lakes: Lakes Okeechobee and Apopka (Florida, USA). Lake and Reservoir Management 15: 298–309.Google Scholar
  29. Havens, K. E., T. Fukushima, P. Xie, T. Iwakuma, R. T. James, N. Takamura, T. Hanazato & T. Yamamoto, 2001b. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (P.R. China), and Okeechobee (USA). Environmental Pollution 111: 263–272.PubMedCrossRefGoogle Scholar
  30. Havens, K. E., R. T. James, T. L. East & V. H. Smith, 2003. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by nonpoint source nutrient pollution. Environmental Pollution 122: 379–390.PubMedCrossRefGoogle Scholar
  31. Havens, K. E., M. C. Harewll, M. A. Brady, B. Sharfstein, T. L. East, A. J. Rodusky, D. Anson & R. P. Maki, 2002. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake. The Scientific World Journal 2: 949–965.Google Scholar
  32. Havens, K. E., K.-R. Jin, A. J. Rodusky, B. Sharfstein, M. A. Brady, T. L. East, N. Iricanin, R. T. James, M. C. Harwell & A. D. Steinman, 2001a. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level. The Scientific World Journal 1: 44–70.Google Scholar
  33. Havens, K. E., E. J. Phlips, M. F. Cichra & B. L. Li, 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology 39: 547–556.CrossRefGoogle Scholar
  34. Havens, K. E. & C. L. Schelske, 2001. The importance of considering biological processes when setting total maximum daily loads (TMDL) for phosphorus in shallow lakes and reservoirs. Environmental Pollution 113: 1–9.PubMedCrossRefGoogle Scholar
  35. Havens, K. E., B. Sharfstein, M. A. Brady, T. L. East, M. C. Harwell, R. P. Maki & A. J. Rodusky, 2004. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany 78: 67–82.CrossRefGoogle Scholar
  36. Havens, K. E. & A. D. Steinman, 1995. Aquatic systems. In Rechcigl, J. E. (ed.), Soil Amendments—Impacts on Biotic Systems. Lewis Publishers, Florida, USA.Google Scholar
  37. Havens, K. E. & W. W. Walker Jr., 2002. Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA). Lake and Reservoir Management 18: 227–238.Google Scholar
  38. Herdendorf, C. E., 1984. Inventory of the morphometric and limnological characteristics of the large lakes of the world. Tech. Bull. Ohio Sea Grant, Columbus, Ohio, USA.Google Scholar
  39. Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnology and Oceanography 30: 1131–1143.Google Scholar
  40. Hutchinson, G. E., 1975. A Treatise on Limnology, volume 1, part 2—Chemistry of Lakes. John Wiley and Sons, New York, USA.Google Scholar
  41. Hwang, S.-J., K. E. Havens & A. D. Steinman, 1998. Phosphorus kinetics of planktonic and benthic assemblages in a shallow subtropical lake. Freshwater Biology 40: 729–745.CrossRefGoogle Scholar
  42. Ishikawa, T. & M. Tanaka, 1993. Diurnal stratification and its effects on wind-induced currents and water qualities in Lake Kasumigaura, Japan. Journal of Hydraulic Research 31: 307–322.CrossRefGoogle Scholar
  43. James, R. T., B. L. Jones & V. H. Smith, 1995a. Historical trends in the Lake Okeechobee ecosystem II. Nutrient budgets. Archiv für Hydrobiologie, Supplement 107: 25–47.Google Scholar
  44. James, R. T., J. Martin, T. Wool & P. F. Wang, 1997. A sediment resuspension and water quality model of Lake Okeechobee. Journal of the American Water Resources Association 33: 661–680.CrossRefGoogle Scholar
  45. James, R. T., V. H. Smith & B. L. Jones, 1995b. Historical trends in the Lake Okeechobee ecosystem III. Water quality. Archiv für Hydrobiologie, Supplement 107: 49–69.Google Scholar
  46. Jin, K.-R. & Z.-G. Ji, 2001. Calibration and verification of a spectral wind-wave model for Lake Okeechobee. Ocean Engineering 28: 571–584.CrossRefGoogle Scholar
  47. Jin, K.-R., Z.-G. Ji & J. H. Hamrick, 2002. Modeling winter circulation in Lake Okeechobee, Florida. Journal of Waterway, Port, Coastal and Ocean Engineering 27: 114–125.CrossRefGoogle Scholar
  48. Jin, K.-R., J. H. Hamrick & T. Tisdale, 2000. Application of three-dimensional hydrodynamic model for Lake Okeechobee. Journal of Hydraulic Engineering 126: 758–771.CrossRefGoogle Scholar
  49. Kristensen, P., M. Sondergaard & E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 101–109.CrossRefGoogle Scholar
  50. Kufel, L. & I. Kufel, 2002. Chara beds acting as nutrient sinks in shallow lakes—a review. Aquatic Botany 72: 249–260.CrossRefGoogle Scholar
  51. Landsea, C., 2001. Testimony before the Committee on Science, Environment, Technology, and Standards Sub-Committee. United States House of Representatives, Washington, D.C.Google Scholar
  52. Lean, D. R. S., 1973a. Phosphorus dynamics in lake water. Science 179: 678–680.PubMedCrossRefGoogle Scholar
  53. Lean, D. R. S., 1973b. Movements of phosphorus between its biologically important forms in lake water. Journal of the Fisheries Research Board of Canada 30: 1525–1536.Google Scholar
  54. Luettich, R. A. Jr., D. R. F. Harleman & L. Somlyudy, 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography 35: 1050–1067.CrossRefGoogle Scholar
  55. Maceina, M. J., 1993. Summer fluctuations in planktonic chlorophyll a concentrations in Lake Okeechobee, Florida: the influence of lake levels. Lake and Reservoir Management 8: 1–11.CrossRefGoogle Scholar
  56. Maceina, M. J. & D. M. Soballe, 1990. Wind-related limnological variation in Lake Okeechobee. Lake and Reservoir Management 6: 93–100.Google Scholar
  57. Mazumder, A. & K. E. Havens, 1998. Nutrient-chlorophyll relationships in temperate vs. subtropical lakes. Canadian Journal of Fisheries and Aquatic Sciences 55: 1652–1662.CrossRefGoogle Scholar
  58. Moore, P. A. Jr. & K. R. Reddy, 1994. Role of Eh and pH on phosphorus biogeochemistry in sediments of Lake Okeechobee, Florida. Journal of Environmental Quality 23: 955–964.CrossRefGoogle Scholar
  59. Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes (parts I and II). Journal of Ecology 29: 280–329.CrossRefGoogle Scholar
  60. Murphy, T., K. Hall & I. Yesaki, 1983. Co-precipitation of phosphate and calcite in a naturally eutrophic lake. Limnology and Oceanography 28: 58–67.Google Scholar
  61. Otsubo, K. & K. Muraoka, 1987. Field studies on physical properties of sediment and sediment resuspension in Lake Kasumigaura. Japanese Journal of Limnology 48: 131–138.Google Scholar
  62. Peters, R. H. & A. Cattaneo, 1984. The effects of turbulence on phosphorus supply in a shallow bay of Lake Memphremagog. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 22: 185–189.Google Scholar
  63. Phlips, E. J., M. Cichra, K. E. Havens, C. Hanlon, S. Badylak, B. Rueter, M. Randall & P. Hansen, 1997. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow subtropical lake. Journal of Plankton Research 19: 319–342.CrossRefGoogle Scholar
  64. Phlips, E. J., F. J. Aldridge & P. Hansen, 1995. Patterns of water chemistry, physical and biological parameters in a shallow subtropical lake (Lake Okeechobee, Florida, USA). Archiv für Hydrobiologie, Advances in Limnology 45: 117–135.Google Scholar
  65. Phlips, E. J., P. V. Zimba, M. S. Hopson & T. L. Crisman, 1993. Dynamics of the plankton community in submerged plant dominated regions of Lake Okeechobee, Florida, USA. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 25: 423–426.Google Scholar
  66. Qin, B., G. Zhu, L. Zhang, L. Luo, G. Gao, W. Sumin & B. Gu, 2006. Models and estimation methods of nutrient release from sediments of large shallow lakes: a case study of Lake Taihu. Science in China (in press).Google Scholar
  67. Reddy, K. R., 1993. Lake Okeechobee Phosphorus Dynamics Study. volume III-biogeochemical processes in the sediments. Technical Report to the South Florida Water Management District, West Palm Beach, Florida, USA.Google Scholar
  68. Reddy, K. R., Y. P. Sheng & B. L. Jones, 1995. Lake Okeechobee Phosphorus Dynamics Study. volume I-summary. Technical Report to the South Florida Water Management District, West Palm Beach, Florida, USA.Google Scholar
  69. Rigler, F. H., 1956. A tracer study of the phosphorus cycle in lake water. Ecology 37: 675–683.CrossRefGoogle Scholar
  70. Rigler, F. H., 1964. The phosphorus fractions and the turnover time of inorganic phosphorus in the epilimnion of lakes. Canadian Fish Culturist 32: 3–9.Google Scholar
  71. Rigler, G. H., 1973. A dynamic view of the phosphorus cycle in lakes. In Griffith, E. J., A. Beeton, J. M. Spencer & D. T. Mitchell (eds), Environmental Phosphorus Handbook. John Wiley and Sons, New York, USA.Google Scholar
  72. Reynolds C. S., 1994. The Ecology of Freshwater Phytoplankton. Cambridge Univiversity Press.Google Scholar
  73. Sas, H., 1989. Lake restoration by reduction of nutrient loadings: expectations, experiences, extrapolations. Academia Verlag Richarz, Germany.Google Scholar
  74. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, New York, USA.Google Scholar
  75. Sheng, Y. P., 1993. Hydrodynamics, sediment transport and their effects on phosphorus dynamics in Lake Okeechobee. In Mehta, A. J. (ed.), Coastal and Estuarine Studies 42: Near-shore and Estuarine Cohesive Sediment Transport. American Geophysical Union, Washington, D.C.Google Scholar
  76. Sheng, Y. P., 1999. Effects of hydrodynamic processes on phosphorus distribution in aquatic ecosystems. In Reddy, K. R., G. A. O’Conner & C. L. Schelske (eds), Phosphorus Biogeochemistry in Subtropical Ecosystems. Lewis Publishers, Florida, USA.Google Scholar
  77. Sondergaard, M., J. P. Jensen & E. Jeppesen, 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The ScientificWorld Journal 1: 427–442.Google Scholar
  78. Sondergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.CrossRefGoogle Scholar
  79. Steinman, A. D., K. E. Havens, N. G. Aumen, R. T. James, K-R. Jin, J. Zhang & B. H. Rosen, 1999. Phosphorus in Lake Okeechobee: sources, sinks, and strategies. In Reddy, K. R., G. A. O’Conner & C. L. Schelske (eds), Phosphorus Biogeochemistry in Subtropical Ecosystems. Lewis Publishers, Florida, USA.Google Scholar
  80. Steinman, A. D., K. E. Havens, H. J. Carrick & R. VanZee, 2002a. The past, present, and future hydrology and ecology of Lake Okeechobee ant its watersheds. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coastal Reefs of the Florida Keys, an Ecosystem Restoration Sourcebook. CRC Press, Florida, USA.Google Scholar
  81. Steinman, A. D., K. E. Havens, A. J. Rodusky, B. Sharfstein, R. T. James & M. C. Harwell, 2002b. The influence of environmental variables and a managed water recession on the growth of charophytes in a large, subtropical lake. Aquatic Botany 72: 297–313.CrossRefGoogle Scholar
  82. Van Liere, L. & R. D. Gulati, 1992. Restoration and Recovery of Shallow Eutrophic Lake Ecosystems in the Netherlands. Kluwer Academic Publishers, The Netherlands.Google Scholar
  83. Van Rees, K. C. J., K. R. R. Reddy & P. S. C. Rao, 1996. Influence of benthic organisms on solute transport in lake sediments. Hydrobiologia 317: 31–40.CrossRefGoogle Scholar
  84. Vermaat, J. E., L. Santamaria & P. J. Roos, 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch. Hydrobiologia 148: 549–562.Google Scholar
  85. Wetzel, R. G., 2001. Limnology—Lake and River Ecosystems, 3rd edn. Academic Press, New York, USA.Google Scholar
  86. Yassuda, E. A. & Y. P. Sheng, 1997. Integrated modeling of Tampa Bay estuarine system. Technical Report, Coastal and Ocean Engineering Department, University of Florida, Gainesville, Florida, USA.Google Scholar
  87. Zimba, P. V., M. S. Hopson, J. P. Smith, D. E. Colle & J. V. Shireman, 1995. Chemical composition and distribution of submersed aquatic vegetation in Lake Okeechobee, Florida (1989–1991). Archiv für Hydrobiologie, Advances in Limnology 45: 241–246.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Karl E. Havens
    • 1
    Email author
  • Kang-Ren Jin
    • 2
  • Nenad Iricanin
    • 2
  • R. Thomas James
    • 2
  1. 1.Department of Fisheries and Aquatic SciencesUniversity of FloridaGainesvilleUSA
  2. 2.South Florida Water Management DistrictWest Palm BeachUSA

Personalised recommendations