Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication

  • Vera IstvánovicsEmail author
  • Adrienne Clement
  • László Somlyódy
  • András Specziár
  • László G.-Tóth
  • Judit Padisák
Part of the Developments in Hydrobiology book series (DIHY, volume 194)


The paper presents an overview about recovery of shallow Lake Balaton from eutrophication by assessing quantitative and qualitative changes in phytoplankton, zooplankton, and chironomids as a function of load reduction. The aim was to update the present water quality targets. The proposed targeting scheme supplements the existing one with a range of lake-specific ecological criteria. We conclude that simple targets (desired phytoplankton biomass and permissible load) are the best choice during the initial stage of eutrophication management, but more complex schemes including ecological criteria are needed to trace recovery when re-organization of the ecosystem takes place.


Phosphorus load Sediment behavior Phytoplankton Cyanobacteria Zooplankton Chironomid fauna 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bíró, P., 1997. Temporal variation in Lake Balaton and its fish populations. Ecology of Freshwater Fish 6: 196–216.CrossRefGoogle Scholar
  2. Bíró, P. & L. Vörös, 1982. Relationships between phytoplankton and fish yields in Lake Balaton. Hydrobiologia 97: 3–7.CrossRefGoogle Scholar
  3. Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 18: 5–59.Google Scholar
  4. Clement, A., V. Istvánovics & L. Somlyódy, Evaluation of water quality of Lake Balaton. Vízügyi Közlemények (in Hungarian) (in press).Google Scholar
  5. Clement, A., 2000. Improving uncertain nutrient load estimates for Lake Balaton. Water Science and Technology 43: 279–286.Google Scholar
  6. Csermák, K. & F. Máté, 2004. Soils of Lake Balaton. V.E. Georgikon Kar, Keszthely, Hungary (in Hungarian).Google Scholar
  7. Dévai, Gy., 1990. Ecological background and importance of the change of chironomid fauna (Diptera: Chironomidae) in shallow Lake Balaton. Hydrobiologia 191: 189–198.CrossRefGoogle Scholar
  8. Dévai, Gy. & J. Moldován, 1983. An attempt to trace eutrophication in a shallow lake (Balaton, Hungary) using chironomids. Hydrobiologia 103: 169–175.CrossRefGoogle Scholar
  9. G.-Tóth, L., 1991. Respirative Electron Transport System (ETS) Activity and Carbon Metabolism of Net Zooplankton in Lake Balaton. In Bíró, P. (ed.), Hundred Years of Lake Balaton Research. Reproprint, Nemesvámos, 172–180 (in Hungarian).Google Scholar
  10. G.-Tóth, L., 1992. Limiting effect of abioseston on food ingestion, postembryonic development time and fecundity of daphnids in Lake Balaton (Hungary). Journal of Plankton Research 14: 435–446.CrossRefGoogle Scholar
  11. G.-Tóth, L., 2000. Feeding biology of planktonic crustaceans and their role in elimination of phytoplankton in Lake Balaton. DSc Thesis, Balaton Limnological Research Institute, Tihany (in Hungarian).Google Scholar
  12. Herodek, S., 1984. The eutrophication of Lake Balaton: measurements, modeling and management. Internazionale Vereinigung für Theoretische und Angewandte Limnologie 22: 1087–1091.Google Scholar
  13. Herodek, S., 1986. Phytoplankton Changes During Eutrophication and P and N Metabolism. In Somlyódy, L. & G. van Straten (eds), Modeling and Managing Shallow Lake Eutrophication. Springer-Verlag, Berlin, 183–204.Google Scholar
  14. Istvánovics, V., A. Osztoics & M. Honti, 2004. Dynamics and ecological significance of daily internal load of phosphorus in shallow Lake Balaton, Hungary. Freshwater Biology 49: 232–252.CrossRefGoogle Scholar
  15. Istvánovics, V. & L. Somlyódy, 2001. Factors influencing lake recovery from eutrophication — the case of Basin 1 of Lake Balaton. Water Research 35: 729–735.PubMedCrossRefGoogle Scholar
  16. Istvánovics, V., L. Somlyódy & A. Clement, 2002. Cyanobacteria-mediated internal eutrophication in shallow Lake Balaton after load reduction. Water Research 36: 3314–3322.PubMedCrossRefGoogle Scholar
  17. Koncsos, L., 2003. Evaluation of the Achievement in Water Quality Management. In Mahunka, S. & J. Baczerowski (eds), Results of Lake Balaton Research in 2002. Hungarian Academy of Sciences, Budapest, 79–85 (in Hungarian).Google Scholar
  18. Láng, I., 1986. Impact on Policymaking: Background to a Government Decision. In Somlyódy, L. & G. van Straten (eds), Modeling and Managing Shallow Lake Eutrophication. Springer-Verlag, Berlin, 110–122.Google Scholar
  19. Lijklema, L., P. Gelencsér, F. Szilágyi & L. Somlyódy, 1986. Sediment and its Interaction with Water. In Somlyódy, L. & G. van Straten (eds), Modeling and Managing Shallow Lake Eutrophication. Springer-Verlag, Berlin, 156–183.Google Scholar
  20. Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwater Biology 21:139–162.CrossRefGoogle Scholar
  21. Mátyás, K., 1996. Phytoplankton Studies in the Kis-Balaton Water Protection System between 1991 and 1995. In Pomogyi, P. (ed.), 2nd. Kis-Balaton Symposium, ISBN 963 02 9991 7. West-Transdanubian Water Authority, Keszthely, 119–130 (in Hungarian).Google Scholar
  22. Padisák, J., 1994. Relationships between Short-term and Long-term Responses of Phytoplankton to Eutrophication of the Largest Shallow Lake in Central Europe (Balaton, Hungary). In Sund, H., H.-H. Stabel, W. Geller, Y. Xiaogan, Y. Kechang & S. Fengning (eds), Environmental Protection and Lake Ecosystem. Science & Technology Press, Beijing, 419–437.Google Scholar
  23. Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterial species: geographic distribution, population dynamics and autecology. Archive für Hydrobiologie (supplement) 107: 563–593.Google Scholar
  24. Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.CrossRefGoogle Scholar
  25. Padisák, J., É. Soróczki Pintér & Zs. Zámbóné Doma, 2003. Diversity and Spatial-temporal Patterns of Phytoplankton in Lake Balaton in 2002. (in Hungarian). In Mahunka, S. & J. Banczerowski (eds), Results of Lake Balaton Research in 2002, ISSN 1419-1075. MTA, Budapest, 35–42.Google Scholar
  26. Ponyi, J., I. Tátrai & A. Frankó, 1983. Quantitative studies on Chironomidae and Oligochaeta in the benthos of Lake Balaton. Archiv für Hidrobiologie 97: 196–207.Google Scholar
  27. Reynolds, C. S., V. Huszar, C. Kurk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  28. Sas, H., 1989. Lake Restoration and Reduction of Nutrient Loading: Expectations, Experiences, Extrapolations. Academia Verlag Richarz, St Augustin.Google Scholar
  29. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  30. Sebestyén, O., 1953. Quantitative plankton studies in Lake Balaton. II. Decadal changes. Annales Instituti Biologici (Tihany) 21: 63–89 (in Hungarian).Google Scholar
  31. Shanahan, P., D. R. F. Harleman & L. Somlyódy, 1986. Wind-induced Water Motion. In Somlyódy, L. & G. van Straten (eds), Modeling and Managing Shallow Lake Eutrophication. Springer-Verlag, Berlin, 204–255.Google Scholar
  32. Somlyódy, L. & G. Jolánkai, 1986. Nutrient Loads. In Somlyódy, L. & G. van Straten (eds), Modeling and Managing Shallow Lake Eutrophication. Springer-Verlag, Berlin, 125–156.Google Scholar
  33. Søndergaard, M., J. P. Jensen & E. Jeppesen, 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408/409: 145–152.CrossRefGoogle Scholar
  34. Specziár, A., 2004. Long-term Changes in the Chironomid Fauna and Feeding of Fish in Lake Balaton. In Fenyvesi, O. (ed.), Tudományos előadások 2004. MTA Veszprémi Területi Bizottsága, Veszprém, 69–85 (in Hungarian).Google Scholar
  35. Specziár, A. & L. Vörös, 2001. Long-term dynamics of Lake Balaton’s chironomid fauna and its dependence on the phytoplankton production. Archiv für Hydrobiologie 152: 119–142.Google Scholar
  36. Tátrai, I., 1980. About feeding conditions of bream, (Abramis brama L.) in Lake Balaton. Developments in Hydrobiology 3: 81–86.Google Scholar
  37. Virág, Á., 1998, The Past and the Present of Lake Balaton. (In Hungarian). Egri Nyomda Kft., Eger. ISBN 963 9060 216.Google Scholar
  38. Vollenweider, R. A. & J. J. Kerekes, 1982. Background and Summary Results of the OECD Cooperative Programme on Eutrophication. OECD report, Paris.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Vera Istvánovics
    • 1
    Email author
  • Adrienne Clement
    • 1
  • László Somlyódy
    • 1
  • András Specziár
    • 2
  • László G.-Tóth
    • 2
  • Judit Padisák
    • 3
  1. 1.Department of Civil and Environmental EngineeringBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Balaton Limnological Research InstituteHungarian Academy of SciencesTihanyHungary
  3. 3.Department of LimnologyUniversity of VeszprémVeszpremHungary

Personalised recommendations