Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate

  • E. JeppesenEmail author
  • M. Meerhoff
  • B. A. Jacobsen
  • R. S. Hansen
  • M. Søndergaard
  • J. P. Jensen
  • T. L. Lauridsen
  • N. Mazzeo
  • C. W. C. Branco
Part of the Developments in Hydrobiology book series (DIHY, volume 194)


Major efforts have been made worldwide to improve the ecological quality of shallow lakes by reducing external nutrient loading. These have often resulted in lower in-lake total phosphorus (TP) and decreased chlorophyll a levels in surface water, reduced phytoplankton biomass and higher Secchi depth. Internal loading delays recovery, but in north temperate lakes a new equilibrium with respect to TP often is reached after <10–15 years. In comparison, the response time to reduced nitrogen (N) loading is typically <5 years. Also increased top-down control may be important. Fish biomass often declines, and the percentage of piscivores, the zooplankton: phytoplankton biomass ratio, the contribution of Daphnia to zooplankton biomass and the cladoceran size all tend to increase. This holds for both small and relatively large lakes, for example, the largest lake in Denmark (40 km2), shallow Lake Arresø, has responded relatively rapidly to a ca. 76% loading reduction arising from nutrient reduction and top-down control. Some lakes, however, have proven resistant to loading reductions. To accelerate recovery several physico-chemical and biological restoration methods have been developed for north temperate lakes and used with varying degrees of success. Biological measures, such as selective removal of planktivorous fish, stocking of piscivorous fish and implantation or protection of submerged plants, often are cheap versus traditional physico-chemical methods and are therefore attractive. However, their long-term effectiveness is uncertain. It is argued that additional measures beyond loading reduction are less cost-efficient and often not needed in very large lakes.

Although fewer data are available on tropical lakes these seem to respond to external loading reductions, an example being Lake Paranoá, Brazil (38 km2). However, differences in biological interactions between cold temperate versus warm temperate-subtropical-tropical lakes make transfer of existing biological restoration methods to warm lakes difficult. Warm lakes often have prolonged growth seasons with a higher risk of long-lasting algal blooms and dense floating plant communities, smaller fish, higher aggregation of fish in vegetation (leading to loss of zooplankton refuge), more annual fish cohorts, more omnivorous feeding by fish and less specialist piscivory. The trophic structures of warm lakes vary markedly, depending on precipitation, continental or coastal regions locations, lake age and temperature. Unfortunately, little is known about trophic dynamics and the role of fish in warm lakes. Since many warm lakes suffer from eutrophication, new insights are needed into trophic interactions and potential lake restoration methods, especially since eutrophication is expected to increase in the future owing to economic development and global warming.


Lake restoration Large lakes Recovery Nutrient loading reduction Climate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agostinho, A. A., L. C. Gomes & H. J. Ferreira Jr. 2003. Relações entre macrófitas aquáticas e fauna de peixes. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrófitas aquáticas. EDUEM, Maringá, 261–279.Google Scholar
  2. Aguiaro, T. & E. P. Caramaschi, 1998. Trophic guilds in fish assemblages in three coastal lagoons of Rio de Janeiro State (Brazil). Verhandlungen der Internationale Vereinigung der Limnologie 26: 2166–2169.Google Scholar
  3. Aguiaro, T., C. W. C. Branco, J. R. Verani & E. P. Caramaschi, 2003. Diet of the clupeid fish Platanichthys platana (Regan, 1917) in two different Brazilian coastal lagoons. Brazilian Archives of Biology and Technology 46: 215–222.Google Scholar
  4. Aguilera, X. & E. Goitia, 1999. Structure of the zoobenthic community of the Laguna Bufeos (Cochabamba, Bolivia). Revista Boliviana de Ecología 6: 55–64.Google Scholar
  5. Arcifa, M. S., E. A. T. Gomes & A. J. Meschiatti, 1992. Composition and fluctuations of the zooplankton of a tropical Brazilian reservoir. Archiv für Hydrobiologie 123: 479–495.Google Scholar
  6. Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, L. K. Mataraza & D. E. Canfield Jr. 2002. Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470: 219–234.Google Scholar
  7. Beklioglu, M., Ö. Ince & I. Tüzün, 2003. Restoration of eutrophic Lake Eymir, Turkey, by biomanipulation undertaken following a major external nutrient control I. Hydrobiologia 489: 93–105.Google Scholar
  8. Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. International Revue der Gesamten Hydrobiologie 80: 519–534.Google Scholar
  9. Berg, S., E. Jeppesen, M. Søndergaard, 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool. 1. Effects on the fish population in Lake Lyng (Denmark). Hydrobiologia 342/343: 311–318.Google Scholar
  10. Blanco, R., S. Romo, M. J. Villena & S. Martinez, 2003. Fish communities and food web interaction in some shallow Mediterranean lakes. Hydrobiologia 506/509:473–480.Google Scholar
  11. Blindow, I., A. Hargeby, B. Wagner & G. Andersson, 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biology 44: 185–197.Google Scholar
  12. Boschi, E., 1981. Fauna de agua dulce de la República Argentina. Vol. XXVI, Decapoda Natantia. FECIC, Buenos Aires, 61 pp.Google Scholar
  13. Branco, C. W. C. & P. A. C. Senna, 1991. The taxonomic elucidation of the Paranoá Lake (Brasília, Brazil) problem: Cylindrospermopsis raciborskii. Bulletin du Jardin Botanique National de Belgique 61: 85–91.Google Scholar
  14. Branco, C. W. C. & P. A. C. Senna, 1994. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in Paranoá Reservoir, Brasilia, Brazil. Algological Studies 75: 85–96.Google Scholar
  15. Branco, C. W. C. & P. A. C. Senna, 1996. Plankton studies in Paranoá Reservoir, Brasília, Brazil. I. Relations among heterotrophic bacteria, chlorophyll a, total phytoplankton, total zooplankton and physichochemical factors. Hydrobiologia 337: 171–181.Google Scholar
  16. Branco, C. W. C., T. Aguiaro, F. A. Esteves & E. P. Caramaschi, 1997. Food sources of the Teleost Eucinostomus argenteus in two coastal lagoons of Brazil. Studies on Neotropical Fauna & Environment 32: 33–40.Google Scholar
  17. Branco, C. W. C. & C. B. Cavalcanti, 1999. A ecologia das Comunidades Planctônicas no Lago Paranoá. Chapter 19. In Henry, R. (ed.), Ecologia de reservatórios: estrutura, funçãao e aspectos sociais. Editora da UNESP, Botucatu, 573–595.Google Scholar
  18. Branco, C. W. C., M.-I. Rocha, G. F. S. Pinto, G. A. Gômara & R. D. Filippo, 2002. Limnological features of Funil Reservoir (Brazil, RJ) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes and Reservoirs: Research and Management 7: 87–92.Google Scholar
  19. Breukelaar, A. W., E. H. R. R. Lammens, J. P. G. Klein Breteler & I. Tatrai, 1994. Effects of benthivorous bream (Abramis brama L.) and carp (Cyprinus caprio L.) on sediment resuspension and concentration of nutrients and chlorophyll a. Freshwater Biology 32:113–121.Google Scholar
  20. Burks, R. L., E. Jeppesen, D. M. Lodge & T. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting littoral zones. Freshwater Biology 47: 343–365.Google Scholar
  21. Burnett, J. A. B., S. P. Mattos & N. M. P. Azzolin, 2001. Intervenções da Companhia de Saneamento. In Olhares sobre o Lago Paranoá. Secretaria de Meio Ambiente e Recursos Hídricos do DF, Brasília, Capítulo IX: 199–211.Google Scholar
  22. Cadima, M. M., 1997. Algae and macrophytes of the lake Alalay (Cochabamba, Bolivia). Revista Boliviana de Ecologia 3: 35–46.Google Scholar
  23. Collins, P, 1999. Feeding of Palaemonetes argentinus (Decapoda: Palaemonidae) from an oxbow lake of the Paraná River, Argentina. Journal of Crustacean Biology 19: 485–492.Google Scholar
  24. Collins, P. & J. C. Paggi, 1998. Feeding ecology of Macrobrachium borelli (Nobili) (Decapoda: Palaemonidae) in the food valley of the River Paraná, Argentina. Hydrobiologia 363: 21–20.Google Scholar
  25. Conrow, R., A. V. Zale & R. W. Gregory, 1990. Distributions and abundances of early stages of fishes in a Florida lake dominated by aquatic macrophytes. Transactions of the American Fisheries Society 119:521–528.Google Scholar
  26. Cooke, G. D., 1993. Phosphorus inactivation and sediment oxidation. In Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth (eds), Restoration and Management of Lakes and Reservoirs, 2nd ed. Lewis Publishers, Boca Raton: 161–209.Google Scholar
  27. Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 1993. Restoration and Management of Lakes and Reservoirs. Boca Raton, Lewis Publishers, Florida.Google Scholar
  28. Cronberg, G., 1976. The Lago Paranoá Restoration Project: Phytoplankton ecology and taxonomy. A preliminary report. Brasília (Project FAHO — World Health Organization, 76/PW/BRA/2000, 24 pp.Google Scholar
  29. Datta, S. & B. B. Jana, 1998. Control of blooom in a tropical lake: grazing efficiency of some herbivorous fishes. Journal of Fish Biology 53: 12–24.Google Scholar
  30. Drenner, R. & D. Hambright, 1999. Review: biomanipulation of fish assemblages as a lake restoration technique. Archiv für Hydrobiologie 146: 129–165.Google Scholar
  31. Dumont, H. J., 1994. On the diversity of the Cladocera in the tropics. Hydrobiologia 272: 27–38.Google Scholar
  32. Elmoor-Loureiro, L. M. A., L. Mendonça-Galvão & C. Padovesi-Fonseca, 2004. New cladocerans from Lake Paranoá, Central Brazil. Brazilian Journal of Biology 64: 415–422.Google Scholar
  33. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.Google Scholar
  34. Garcia, P. R., S. Nandini, S. S. S. Sarma, E. R. Valderrama, I. Cuesta & M. D. Hurtado, 2002. Seasonal variations of zooplankton abundance in the freshwater reservoir Valle de Bravo (Mexico). Hydrobiologia 467: 99–108.Google Scholar
  35. González, Sagrario M. A., E. Jeppesen, J. Gomà, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2005 Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology 50: 27–41.Google Scholar
  36. González, E. J., G. Bernal, H. Hernández, M. L. Matos & C. Penaherrera, 2005. De qué se alimenta el zooplancton de los embalses venezolanos? Memorias del Instituto de Biología Experimental 4: 137–141.Google Scholar
  37. Hanson, M. A. & M. G. Butler, 1990. Early responses of plankton and turbidity to biomanipulation in a shallow prairie lake. Hydrobiologia 200/201: 317–327.Google Scholar
  38. Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-Å. Nilsson, M. Søndergaard & J. Strand, 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558–574.Google Scholar
  39. Horppila, J., H. Peltonen, T. Malinen, E. Juokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish — issues of concern in biomanipulation of lakes. Restoration Ecology 6: 1–10.Google Scholar
  40. Iglesias, C., G. Goyenola, N. Mazzeo, M. Meerhoff, E. Rodó & E. Jeppesen, 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia DOI 10.1007/s10750-007-0599-4 (in press).Google Scholar
  41. Infante, A., 1978. Natural food of herbivorous zooplankton of lake Valencia (Venezuela). Archiv Hydrobiologia 82: 347–358.Google Scholar
  42. Jacobsen, B. A., R. S. Hansen, B. Moeslund, E. Jørgensen & G. Jensen, 2004. Arresø-tilstand og udvikling 2003. Report from Frederiksborg Amt, Teknik og Miljø, Denmark, 115 pp.Google Scholar
  43. James, C., J. Fisher, V. Russell, S. Collings & B. Moss, 2005. Nitrate availability and plant species richness: implications for management of freshwater lakes. Freshwater Biology 50: 1049–1063.Google Scholar
  44. Jeppesen, E., M. Søndergaard, E. Kanstrup, B. Petersen, R. B. Henriksen, M. Hammershøj, E. Mortensen, J. P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275/276: 15–30.Google Scholar
  45. Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. Perrow, 1997. Impact of submerged macrophytes on fish-zooplankton relationships in lakes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131, Springer Verlag, 91–115.Google Scholar
  46. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45:201–213.Google Scholar
  47. Jeppesen, E. & I. Sammalkorpi, 2002. Lakes. In Perrow, M. & T. Davy (eds), Handbook of Restoration Ecology, Chapter 14, Cambridge University Press, 297–324.Google Scholar
  48. Jeppesen, E., J. P. Jensen & M. Søndergaard, 2002. Response of phytoplankton, zooplankton and fish to re-oligotrophication: an 11-year study of 23 Danish lakes. Aquatic Ecosystem Health & Management 5:31–43.Google Scholar
  49. Jeppesen, E., J. P. Jensen, M. Søndergaard, M. Fenger-Grøn, K. Sandby, P. Hald, Møller & U. H. Rasmussen, 2004. Does fish predation influence zooplankton community structure and grazing during winter in north-temperate lakes? Freshwater Biology 49: 432–447.Google Scholar
  50. Jeppesen, E., J. P. Jensen, M. Søndergaard & T. Lauridsen, 2005a. Response of fish and plankton to nutrient loading reduction in 8 shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology 50: 1616–1627.Google Scholar
  51. Jeppesen, E., M. Søndergaard, J. P. Jensen, T. Lauridsen, L. Liboriussen, R. Bjerring Hansen, L. S. Johansson & F. Landkildehus, 2005b. The response of north temperate lakes to reduced nutrient loading with special emphasis on shallow Danish lakes. Verhandlungen der Internationale Vereinigung der Limnologie 29:115–122.Google Scholar
  52. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Köhler, E. Lammens, T. L. Lauridsen, M. Manca, R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willeń & M. Winder, 2005c. Lakes’ response to reduced nutrient loading-an analysis of contemporary data from 35 European and North American long term studies. Freshwater Biology 50: 1747–1771.Google Scholar
  53. Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. Branco, V. Huszar & F. Scasso, 2005d. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. Chapter 11. In Reddy, M. V. (ed.), Tropical Eutrophic Lakes: Their Restoration and Management. Science Publishers, Enfield, 331–359.Google Scholar
  54. Kalff, J., 2002. Limnology — Inland Water Ecosystems. Prentice-Hall Inc.Google Scholar
  55. Ke, X. S. & W. Li, 2006. Germination requirement of Vallisneria natans seeds: implications for lake restoration in Chinese Lakes. Hydrobiologia 559:357–362.Google Scholar
  56. Klein, T., 1989. Søerne i de gode gamle dage-om den “Økologiske baggrundstilstand”. Vand & Miljø 5: 211–215.Google Scholar
  57. Kristensen, P., M. Søndergaard & E. Jeppesen, 1992. Resuspension in a shallow hypertrophic lake. Hydrobiologia 228: 101–109.Google Scholar
  58. Kronvang, B., E. Jeppesen, D. J. Conley, M. Søndergaard, S. E. Larsen, N. B. Ovesen & J. Carstensen, 2005. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology 304: 274–288.Google Scholar
  59. Lathrop, R.C., B. M. Johnson, T. B. Johnson, M. T. Vogelsang, S. R. Carpenter, T. R. Hrabik, J. F. Kitchell, J. J. Magnuson, L. G. Rudstam & R. S. Stewart, 2002. Stocking piscivores to improve fishing and water clarity: a synthesis of the Lake Mendota biomanipulation project. Freshwater Biology 47: 2410–2424.Google Scholar
  60. Lauridsen, T. L., L. J. Pedersen, E. Jeppesen & M. Søndergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research 18: 2283–2294.Google Scholar
  61. Lauridsen, T., H. Sandsten & P. H. Møller, 2003. The restoration of a shallow lake by introducing Potamogeton spp.: the impact of waterfowl grazing. Lakes & Reservoirs: Research & Management 8: 177–187.Google Scholar
  62. Lazzaro, X., 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verhandlungen der Internationale Vereinigung der Limnologie 26: 719–730.Google Scholar
  63. Lewis, W. M. Jr. 1996. Tropical lakes: how latitude makes a different. In Schiemer, F. & K. T. Boland (eds), Perspectives in Tropical Limnology. SPB Academic Publishing B.V., Amsterdam, The Netherlands, 43–64.Google Scholar
  64. Lorier, E. & N. Berois, 1995. Reproducción y nutrición embrionaria en Cnesterodon decemmaculatus (Teleoste: Poeciliidae). Revista Brasileira de Biologia 55: 27–44.Google Scholar
  65. Marsden, S., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwater Biology 21: 139–162.Google Scholar
  66. Matyas, K, I. Oldal, J. Korponai, I. Tatrai & G. Paúlovits, 2003. Indirect effect of different fish communities in nutrient chlorophyll relationship in shallow hypertrophic water quality reservoir. Hydrobiologia 504: 231–239.Google Scholar
  67. Mazzeo, N., L. Rodríguez-Gallego, G. Kruk, M. Meerhoff, J. Gorga, G. Lacerot, F. Quintans, M. Loureiro, D. Larrea & F. García-Rodrígues, 2003. Effect of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506/509: 591–602.Google Scholar
  68. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.Google Scholar
  69. Meerhoff, M., C. Fosalba, C. Bruzzone, N. Mazzeo, W. Noordoven & E. Jeppesen, 2005. An experimental study of habitat choice of Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51: 1320–1330.Google Scholar
  70. Meijer, M.-L., I. de Boois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in the Netherlands: an evaluation of 18 case studies in shallow lakes. Hydrobiologia 408/409: 13–30.Google Scholar
  71. Meschiatti, A. J., M. S. Arcifa & N. Fenerich-Verani, 2000. Fish communities associated with macrophytes in Brazilian floodplain lakes. Environmental Biology of Fishes 58: 133–143.Google Scholar
  72. Mitchell, S. F. & M. Perrow, 1997. Interactons between grazing birds and macrophytes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard, K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York, 175–196.Google Scholar
  73. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367–377.Google Scholar
  74. Moss, B., 1994a. Brackish and fresh-water shallow lakes — different systems or variations on the same theme? Hydrobiologia 276: 1–14.Google Scholar
  75. Moss, B., S. McGowan & L. Carvalho, 1994b. Determination of phytoplankton crops by top-down and bottomup mechanisms in a group of English lakes, the West Midland Meres. Limnology and Oceanography 39: 1020–1030.Google Scholar
  76. Moss, B., D. Stephen, D. M. Balayla, E. Bécares, S. E. Collings, C. Fernández-Aláez, M. Fernández-Aláez, C. Ferriol, P. García, J. Gomá, M. Gyllström, L.-A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Russell, A. Ståhl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentín, W. J. Van de Bund, E. Van Donk, E. Vicente & M. J. Villena, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1649.Google Scholar
  77. Nagdali, S. S. & P. K. Gupta, 2002. Impact of mass mortality of a mosquito fish, Gambusia affinis on the ecology of a fresh water eutrophic lake (Lake Naini Tal, India). Hydrobiologia 468: 45–52.Google Scholar
  78. Oliveira, L. P. H. & L. Krau, 1970. Hidrobiologia geral aplicada particularmente a veiculadores de esquistossomos: hipereutrofia, mal moderno das águas. Memórias do Instituto Oswaldo Cruz 68: 89–118.PubMedGoogle Scholar
  79. Padovesi-Fonseca, C., L. Mendonça-Galvão, D. F. Pereira, M. G. Philomeno & D. L. P. Rocha, 2001. O zooplâncton do Lago Paranoá. In Olhares sobre o Lago Paranoá. Secretaria de Meio Ambiente e Recursos Hídricos do DF, Brasília, 115–117.Google Scholar
  80. Paugy, D. & C. Lévêque, 1999. La Reproduction. In Lévêque, C. & D. Paugy (eds), Les poissons des eaux continentales africaines: diversité, écologie, utilisation par ĺhomme. IRD Editions, Paris, 129–152.Google Scholar
  81. Peltonen, H., J. Ruuhijärvi, M. Olin, T. Malinen, J. Horppila & J. Keto, 1999. The effects of food-web management and environmental variations on fish assemblage dynamics in a north-temperate lake. Journal of Fish Biology 55: 54–67.Google Scholar
  82. Pereira, C. E. B. & C. G. P. Cavalcanti, 1997. Lago Paranoá — Rumo à Recuperação. Technical Report, CAESB, 15 pp.Google Scholar
  83. Persson, A., 1997. Phosphorus release by fish in relation to external and internal load in a eutrophic lake. Limnology & Oceanography 43: 577–583.Google Scholar
  84. Perrow, M. R., M.-L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342/343: 355–365.Google Scholar
  85. Phillips, G., A. Kelly, J-A. Pitt, R. Sanderson & E. Taylor, 2005. The recovery of Barton Broad, a very shallow eutrophic lake, 20 years after the control of effluent derived phosphorus. Freshwater Biology 50: 1628–1638.Google Scholar
  86. Pinto-Coelho, R. M. & A. Giani, 1985. Variações sazonais do fitoplâncton e fatores físico-químicos no Reservatório do Paranoá, Brasília. Ciência e Cultura 37: 2000–2006.Google Scholar
  87. Pouilly, M., C. Ibáñez, M. Gutiérrez & T. Yunoki, 1999. Ecological functioning of floodplain lakes of Mamoré river (Beni, Bolivia). Revista Boliviana de Ecologia 6: 41–54.Google Scholar
  88. Prejs, A., A. Martyniak, S. Boroń, P. Hliwa & P. Koperski, 1994. Food web manipulation in a small eutrophic Lake Wirbel, Poland: effect of stocking with juvenile pike on planktivorous fish. Hydrobiologia 275/276: 65–70.Google Scholar
  89. Rejas, D. & M. Maldonado, 2000. Spatial-temporal variations in the composition of the fish community of a shallow lake in the floodplain of the Ichilo river (Cochabamba, Bolivia). Revista Boliviana de Ecologia 7: 37–46.Google Scholar
  90. Quirós, R., 1998. Fish effects on trophic relationships in the pelagic zone of lakes. Hydrobiologia 361: 101–111.Google Scholar
  91. Ribeiro, M. C. L. B., F. L. R. M. Starling, T. Walter & E. M. Farah, 2001. Peixes. In Olhares sobre o Lago Paranoá (ed.), Secretaria de Meio Ambiente e Recursos Hídricos do DF, Brasília, 121–128.Google Scholar
  92. Rodríguez-Gallego, L., N. Mazzeo, M. Meerhoff, J. Clemente, C. Kruk, F. Scasso, G. Lacerot, J. García & F. Quintans, 2004. Effects of a water recirculation system covered by free-floating plants on the restoration of a hypertrophic subtropical lake. Lakes and Reservoirs: Research and Management 9: 205–213.Google Scholar
  93. Romo, S., M.-J. Villena, M. Sahuquillo, J. M. Soria, T. Alfonso, E. Vicente & M. R. Miracle, 2005. Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as northern shallow lakes? Freshwater Biology 50: 1706–1717.Google Scholar
  94. Sas, H. (ed.), 1989. Lake restoration by reduction of nutrient loading. Expectation, experiences, extrapolation. Acad. Ver. Richardz Gmbh.Google Scholar
  95. Scasso, F., N. Mazzeo, J. Gorga, C. Kruk, G. Lacerot, J. Clemente, D. Fabián & S. Bonilla, 2001. Limnological changes of a subtropical shallow hypertrophic lake during its restoration. Two years of whole-lake experiments. Aquatic Conserversation: Marine Freshwater Ecosystems 11: 31–44.Google Scholar
  96. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.Google Scholar
  97. Skov, C., & S. Berg, 1999. Utilization of natural and artificial habitats by YOY pike in a biomanipulated lake. Hydrobiologia 408/409: 115–122.Google Scholar
  98. Starling, F. L. R. M., 1993a. Control of eutrophication by silver carp (Hypophthalmus molitrix) in the tropical Paranoá Reservoir (Brasília, Brazil): a mesocosm experiment. Hydrobiologia 257: 143–152.Google Scholar
  99. Starling, F. L. R. M., 1993b. Análise experimental dos efeitos da tilápia do Congo (Tilapia rendalli) e carpa prateada (Hypophthalmus molitrix) sobre a estrutura da comunidade planctônica do Lago Paranoá, Brasília (DF). Acta Limnologica Brasileira 4: 144–156.Google Scholar
  100. Starling, F. L. R. M. & A. J. A. Rocha, 1990. Experimental study of the impacts of planktivorous fishes on plankton community and eutrophication of a tropical Brazilian reservoir. In Gulati, R. D., E. H. R. R. Lammens, M. L. Meijer & E. van Donk (eds), Biomanipulation — Tool for Water Management. Developments in Hydrobiology 61. Kluwer Academic Publishers, Dordrecht, 581–591.Google Scholar
  101. Starling, F. L. R. M., M. Beveridge, X. Lazzaro & D. Baird, 1998. Silver carp biomass effectsd on the plankton community in Paranoa Reservoir (Brazil) and an assessment of its potential for improving water quality in lacustrine environments. Internationale Revue der Hydrobiologie 83: 499–507.Google Scholar
  102. Søndergaard, M., L. Olufsen, T. L. Lauridsen, E. Jeppesen, & T. Vindbæk Madsen, 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquatic Botany 53: 73–84.Google Scholar
  103. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World 1: 427–442.Google Scholar
  104. Søndergaard, M., J. P. Jensen, E. Jeppesen & P. H. Møller, 2002a. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquatic Ecosystem Health & Management 5: 19–23.Google Scholar
  105. Søndergaard, M., K.-D. Wolter & W. Ripl, 2002b. Chemical treatment of water and sediments with special reference to lakes. In Perrow, M. & T. Davy (eds), Handbook of Restoration Ecology, Chapter 10. Cambridge University Press, 184–205.Google Scholar
  106. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2005. Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshwater Biology 50: 1605–1615.Google Scholar
  107. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506/509: 135–145.Google Scholar
  108. Thomaz, S. M. & L. M. Bini, 2003. Ecologia e manejo de macrófitas aquáticas. EDUEM, Maringá, 341 pp.Google Scholar
  109. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology & Oceanography 29: 472–486.Google Scholar
  110. Van der Molen, D.T. R. Portielje, 1999. Multi-lake studies in The Netherlands: trends in eutrophication. Hydrobiologia 409: 359–365.Google Scholar
  111. Weisner, S. E. B. & J. A., Strand, 2002. Ecology and management of plants in aquatic systems. In Perrow, M. R., & A. J. Davy (eds), Handbook of Ecological Restoration. Vol. 1. Principles of restoration. Cambridge University Press, Cambridge, 242–256.Google Scholar
  112. Williams, W. D., 1998. Salinity as determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.Google Scholar
  113. Wu, J., P. Xie, M. Dai & J. Wang, 1997. Effects of silver carp density on zooplankton and water quality: implications for eutrophic lakes in China. Journal of Freshwater Ecology 12: 437–444.Google Scholar
  114. Xu, J. & P. Xie, 2004. Studies on the food web structure of Lake Donghu using stable carbon and nitrogen isotope ratios. Journal of Freshwater Ecology 19: 645–650.Google Scholar
  115. Yafe, A., M. Loureiro, F. Scasso & F. Quintans, 2002. Feeding of two Cichlidae species in a hypertrophic urban lake. Iheringia Série Zoologica, Porto Alegre 92: 73–79.Google Scholar
  116. Zalidis, G. C., T. L. Crisman, & P. A. Gerakis, 2002. Restoration of Mediteranean wetlands. Hellnic Ministry of Environment. Physical Planning and Public Works, Athens and Greek Biotope/Wetland Centre, Thermi, Greece, 237 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • E. Jeppesen
    • 1
    • 2
    Email author
  • M. Meerhoff
    • 1
    • 2
    • 3
  • B. A. Jacobsen
    • 4
  • R. S. Hansen
    • 4
  • M. Søndergaard
    • 1
  • J. P. Jensen
    • 1
  • T. L. Lauridsen
    • 1
  • N. Mazzeo
    • 3
  • C. W. C. Branco
    • 5
  1. 1.Department of Freshwater EcologyNational Environmental Research InstituteSilkeborgDenmark
  2. 2.Department of Plant BiologyUniversity of AarhusAarhusDenmark
  3. 3.Departamento de EcologíaFacultad de CienciasMontevideoUruguay
  4. 4.Frederiksborg Amt, Technical DepartmentAmtsgårdenHillerodDenmark
  5. 5.Departamento de Ciências NaturaisUniversidade Federal do Estado do Rio de JaneiroUrca, Rio de JaneiroBrazil

Personalised recommendations