Advertisement

Stability and change of phytoplankton communities in a highly dynamic environment—the case of large, shallow Lake Balaton (Hungary)

  • Márk HontiEmail author
  • Vera Istvánovics
  • András Osztoics
Part of the Developments in Hydrobiology book series (DIHY, volume 194)

Abstract

Time series data of key environmental variables (water temperature, global radiation, vertical light attenuation, internal P load) and biomass of four colour classes of photosynthetically active algae were collected during 2003 and 2004 with daily resolution. Using these data, seasonal patterns of phytoplankton were analyzed as a function of the dynamic environment. Abstraction of the environmental state as a point in multi-dimensional space was used to identify habitat templates of bloom-forming groups and derive an indicator of environmental stability/physical disturbance. These templates were synthesized into a simple threshold model that sufficiently simulated development and collapse of various blooms. Blooms were, however, rare events related to specific environments with strong, unidirectional forcing. Tentative quantification of disturbance and compositional stability/community change allowed discriminating disturbance-driven changes and autogenic succession with reasonable success. The two processes were found to be equally important in shaping the composition and biomass of phytoplankton.

Keywords

Daily time series Environmental stability Physical disturbance Autogenic succession Predictability Ground state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borics, G., B. Tóthmérész, I. Grigorszky, J. Padisák, G. Várbíró & S. Szabó, 2003. Algal assemblage types of bog-lakes in Hungary and their relation to chemistry, hydrological conditions and habitat diversity. Hydrobiologia 50: 145–155.CrossRefGoogle Scholar
  2. Clement, A., 2000. Improving uncertain nutrient load estimates for Lake Balaton. Water Science and Technology 43: 279–286.Google Scholar
  3. Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.PubMedCrossRefGoogle Scholar
  4. Elliott, J. A., A. E. Irish & C. S. Reynolds, 2001. The effects of vertical mixing on a phytoplankton community: a modelling approach to the intermediate disturbance hypothesis. Freshwater Biology 46: 1291–1297.CrossRefGoogle Scholar
  5. Gerhardt, V. & U. Bodemer, 2000. Delayed fluorescence excitation spectroscopy: a method for determining phytoplankton composition. Archiv für Hydrobiologie Special Issues Advances in Limnology 55: 101–120.Google Scholar
  6. Gorzó, Gy., 1987. The influence of physical and chemical factors on akinete germination of heterocytic cyanobacteria from Lake Balaton. Hidrológiai Közlöny 67: 127–133 (in Hungarian).Google Scholar
  7. G.-Tóth, L., 1992. Limiting effect of abioseston on food ingestion, postembryonic development time and fecundity of daphnids in Lake Balaton (Hungary). Journal of Plankton Research 14: 435–446.CrossRefGoogle Scholar
  8. G.-Tóth, L., 2000. Feeding biology of planktonic crustaceans and their role in elimination of phytoplankton in Lake Balaton. D.Sc. Thesis, Balaton Limnological Research Institute, Tihany (in Hungarian).Google Scholar
  9. Istvánovics, V. & S. Herodek, 1985. Orthophosphate uptake of planktonic microorganisms in Lake Balaton. Hydrobiologia 122: 159–166.CrossRefGoogle Scholar
  10. Istvánovics, V. & S. Herodek, 1995. Estimation of net uptake and leakage rates of orthophosphate from 32P uptake kinetics by a force-flow model. Limnology and Oceanography 40: 17–32.CrossRefGoogle Scholar
  11. Istvánovics, V., M. Honti, A. Osztoics, H. M. Shafik, J. Padisák, Y. Yacobi & W. Eckert, 2005. Continuous monitoring of phytoplankton dynamics in Lake Balaton (Hungary) using on-line delayed fluorescence excitation spectroscopy. Freshwater Biology 50: 1950–1970.CrossRefGoogle Scholar
  12. Istvánovics, V., A. Osztoics & M. Honti, 2004. Dynamics and ecological significance of daily internal load of phosphorus in shallow Lake Balaton, Hungary. Freshwater Biology 49: 232–252.CrossRefGoogle Scholar
  13. Istvánovics, V. & L. Somlyódy, 2001. Factors influencing lake recovery from eutrophication-the case of Basin 1 of Lake Balaton. Water Research 35: 729–735.PubMedCrossRefGoogle Scholar
  14. Juhász-Nagy, P., 1993. Notes on compositional diversity. Hydrobiologia 249: 173–182.CrossRefGoogle Scholar
  15. Luettich, R. A., D. R. F. Harleman & L. Somlyódy, 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography 35: 1050–1067.CrossRefGoogle Scholar
  16. Padisák, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249: 135–156.CrossRefGoogle Scholar
  17. Padisák, J., 1994. Relationships between short-term and long-term responses of phytoplankton to eutrophication of the largest shallow lake in Central Europe (Balaton, Hungary). In Sund, H., H.-H. Stabel, W. Geller, Y. Xiaogan, Y. Kechang & S. Fengning (eds), Environmental Protection and Lake Ecosystem. Science & Technology Press, Beijing, 419–437.Google Scholar
  18. Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Zs. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.CrossRefGoogle Scholar
  19. Padisák, J., L. G.-Tóth & M. Rajczy, 1988. The role of storms in the summer succession of phytoplankton in a shallow lake (Lake Balaton, Hungary). Journal of Plankton Research 10: 249–265.CrossRefGoogle Scholar
  20. Padisák, J., L. G.-Tóth & M. Rajczy, 1990. Stir-up effect of wind on a more-or-less stratified shallow lake phytoplankton community, Lake Balaton, Hungary. Hydrobiologia 191: 249–254.CrossRefGoogle Scholar
  21. Padisák, J. & V. Istvánovics, 1997. Differential response of blue-green algal groups to phosphorus load reduction in a large shallow lake: Balaton, Hungary. Verhandlungen der Internationale Vereiningung für theoretische und angewandte Limnologie 26: 574–580.Google Scholar
  22. Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.CrossRefGoogle Scholar
  23. Padisák, J., C. S. Reynolds & U. Sommer (eds), 1993. The intermediate disturbance hypothesis in phytoplankton ecology. Hydrobiologia 249: 1–199.Google Scholar
  24. Reynolds, C. S., 1988. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verhandlungen der Internationale Vereiningung für theoretische und angewandte Limnologie 23: 683–691.Google Scholar
  25. Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf/Luhe.Google Scholar
  26. Shafik, H. M., L. Vörös, M. Présing, A. Kovács & I. Kóbor, 1997. Growth of Cylindrospermopsis raciborskii in batch and continuous cultures. Hidrológiai Közlöny 77: 17–18 (in Hungarian).Google Scholar
  27. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  28. Sommer, U., 1981. The role of r-and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecologica 2: 327–342.Google Scholar
  29. Sommer, U., 1995. An experimental test of the intermediate disturbance hypothesis using cultures of marine phytoplankton. Limnology and Oceanography 40: 1271–1277.Google Scholar
  30. Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Márk Honti
    • 1
    Email author
  • Vera Istvánovics
    • 1
  • András Osztoics
    • 1
  1. 1.Department of Civil and Environmental EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations