The bacterioplankton of Lake Taihu, China: abundance, biomass, and production

  • Guang GaoEmail author
  • Boqiang Qin
  • Ruben Sommaruga
  • Roland Psenner
Part of the Developments in Hydrobiology book series (DIHY, volume 194)


Abundance, biomass and production of pelagic bacteria were examined over one year at monthly sampling intervals across a trophic profile in Meiliang Bay, Lake Taihu. With the lowest density in the open lake, the bacterial abundance showed a clear trend in relation to trophic status. The carbon content per cell was higher in autumn and winter, and the opposite was true for bacterial biomass. Bacterial 3[H]-TdR and 14[C]-Leu incorporation rates, cell production, turnover times and carbon production varied during the annual cycle at different sites. The ratio of bacterial production to primary production was high, independently of the method used, indicates that the microbial food web in Lake Taihu is an important component of the total food web of the lake and dominated by external inputs.


Eutrophication Trophic status Bacterial biomass Bacterial production Lake Taihu 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam, F., T. Fenchel, J. S. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10: 257–263.CrossRefGoogle Scholar
  2. Billen, G., 1990. Delayed development of bacterioplankton with respect to phytoplankton: a clue for understanding their trophic relationships. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 34: 191–201.Google Scholar
  3. Bird, D. F. & J. Kalff, 1984. Empirical relationship between bacterial abundance and chlorophyll concentrations in fresh and marine waters. Canadian Journal of Fisheries and Aquatic Sciences 41: 1015–1023.CrossRefGoogle Scholar
  4. Chin-Leo, G. & D. L. Kirchman, 1988. Estimating bacterial production in marine water from the simultaneous incorporation of thymidine and leucine. Applied and Environmental Microbiology 54: 1934–1939.PubMedGoogle Scholar
  5. Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43: 1–10.CrossRefGoogle Scholar
  6. Davis, P. G. & J. M. Sieburth, 1984. Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing — divided bacteria. Marine Ecology Progress Series 19: 237–246.CrossRefGoogle Scholar
  7. Del Giorgio, P. A. & G. Scarborough, 1995. Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and production rates. Journal of Plankton Research 17: 1905–1924.CrossRefGoogle Scholar
  8. Dufour, P. & M. Colon, 1992. The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments: improvements, performance and applications. Hydrobiologia 232: 211–218.Google Scholar
  9. Fuhrman, J. A. & F. Azam, 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Applied and Environmental Microbiology 39: 1085–1095.PubMedGoogle Scholar
  10. Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterial production in marine surface waters: evaluation and field results. Marine Biology 66: 109–120.CrossRefGoogle Scholar
  11. Fuhrman, J. A., T. D. Sleeter, C. A. Carlson & L. M. Proctor, 1989. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Marine Ecology Progress Series 57: 207–217.CrossRefGoogle Scholar
  12. Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33: 1225–1228.PubMedGoogle Scholar
  13. Huang, Y. P., C. X. Fan, P. M. Pu, J. F. Jiang & Q. Y. Dai, 2001. The Water Environment and Pollution Control in Lake Taihu. Sciences Press, Beijing (in Chinese).Google Scholar
  14. Kirchman, D. L., E. Knees & R. Hodson, 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and Environmental Microbiology 49: 599–607.PubMedGoogle Scholar
  15. Kirchman, D. L. & M. P. Hoch, 1988. Bacterial production in the Delaware Bay estuary estimated from thymidine and leucine incorporation rates. Marine Ecology Progress Series 45: 169–178.CrossRefGoogle Scholar
  16. Kirchman, D. L., S. Y. Newell & R. E. Hodson, 1986. Incorporation versus biosynthesis of leucine: implications for measuring rates of protein synthesis and biomass production by bacteria in marine systems. Marine Ecology Progress Series 32: 47–59.CrossRefGoogle Scholar
  17. Krambeck, C., H. J. Krambeck & J. Overbeck, 1981. Microcomputer assisted biomass determination of plankton bacteria on scanning electron micrographs. Applied and Environmental Microbiology 42: 142–149.PubMedGoogle Scholar
  18. Loferer-Krößbacher, M., K. P. Witzel & R. Psenner, 1998. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Applied and Environmental Microbiology 64: 688–694.PubMedGoogle Scholar
  19. Mason, C. A., G. Hamer & J. D. Bryers, 1986. The death and lysis of microorganisms in environmental processes. FEMS Microbiology Review 39: 373–401.CrossRefGoogle Scholar
  20. Munawar, M. & T. Weisse, 1989. Is the ‘microbial loop’ an early warning indicator of anthropogenic stress? Hydrobiologia 188/189: 163–174.Google Scholar
  21. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.CrossRefGoogle Scholar
  22. Posch, T., M. Loferer-Krößbacher, G. Gao, A. Alfreider, J. Pernthaler & R. Psenner, 2001. Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquatic Microbial Ecology 25: 55–63.CrossRefGoogle Scholar
  23. Psenner, R., 1991a. Detection and sizing of aquatic bacteria by means of epifluorescence microscopy and image analysis. Microscope Analysis 26: 13–15.Google Scholar
  24. Psenner, R., 1991b. Determination of bacterial cell volumes by image analysis. Verhandlungen Internationale Vereinigung Für Theoretische und Angewandte Limnologie 24: 2605–2608.Google Scholar
  25. Quinn, J. P., 1984. The modification and evaluation of some cytochemical techniques for the enumeration of metabolically active heterotrophic bacteria in the aquatic environment. Journal of Applied Bacteriology 57: 51–57.PubMedGoogle Scholar
  26. Raymond, L., J. R. Kepner & J. R. Pratt, 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiology Review 58: 603–615.Google Scholar
  27. Robarts, R. D., M. T. Arts, M. S. Evans & M. J. Waiser, 1994. The coupling of heterotrophic bacterial and phytoplankton production in a hypertrophic, shallow prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 51: 2219–2226.Google Scholar
  28. Servais, P., 1992. Bacterial production measured by 3H-thymidine and 3H-leucine incorporation in various aquatic ecosystems. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 37: 73–81.Google Scholar
  29. Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.CrossRefGoogle Scholar
  30. Smits, J. D. & B. Riemann, 1988. Calculation of cell production from [3H]thymidine incorporation with freshwater bacteria. Applied and Environmental Microbiology 54: 2213–2219.PubMedGoogle Scholar
  31. Sommaruga, R., 1995. Microbial and classical food web: A visit to a hypertrophic lake. FEMS Microbiology Ecology 17: 257–270.CrossRefGoogle Scholar
  32. Sorokin, Y. I., 1999. Aquatic microbial ecology. Backhuys Pbulishers, Leiden, Netherlands.Google Scholar
  33. Stevenson, L. H., 1978. A case for bacterial dormancy in aquatic systems. Microbial Ecology 4: 127–133.CrossRefGoogle Scholar
  34. Thom, S. M., R. W. Horobin, E. Seidler & M. R. Barer, 1993. Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity. Journal of Applied Bacteriology 74: 433–443.PubMedGoogle Scholar
  35. V.-Balogh, K. & L. Vörös, 1997. High bacterial production in hypertrophic shallow reservois rich in humic substances. Hydrobiogia 342/343: 63–70.CrossRefGoogle Scholar
  36. Weisse, T., 1991. The microbial food web and its sensitivity to eutrophication and contaminant enrichment: a cross-system overview. Internationale Revue der gesamten Hydrobiologie 76: 327–337.CrossRefGoogle Scholar
  37. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3 edn. Springer-Verlag, New York.Google Scholar
  38. Zimmerman, R., R. Iturriaga & J. Becker-Birck, 1978. Simultaneous determination of the total number of bacteria and number thereof involved in respiration. Applied and Environmental Microbiology 36: 926–935.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Guang Gao
    • 1
    Email author
  • Boqiang Qin
    • 1
  • Ruben Sommaruga
    • 2
  • Roland Psenner
    • 2
  1. 1.Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingP.R. China
  2. 2.Institute of EcologyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations