Advertisement

Intracellular phosphorus metabolism and growth of Microcystis aeruginosa in dark/light cycles under various redox potential difference conditions

  • Xiaoli Shi
  • Liuyan YangEmail author
  • Lijuan Jiang
  • Fanxiang Kong
  • Boqiang Qin
  • Guang Gao
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 194)

Abstract

Phosphorus metabolism and growth of M. aeruginosa were studied under three different conditions of diel fluctuation in redox potential. Redox potential in the culture increased in light and decreased in dark in all treatments except one, when cysteine was added in darkness. Total phosphorus content in M. aeruginosa decreased in darkness and increased in light during exponential growth but increased continuously in the stationary phase. Conversely, polyphosphate (PolyP) accumulated in darkness but was lost in the light. Low redox potential in darkness promoted PolyP accumulation. Polyglucose and soluble orthophosphate may provide energy and phosphorus, respectively, for PolyP synthesis. PolyP was important to M. aeruginosa survival during poor growth conditions. If the redox potential difference in the dark/light cycle was large, M. aeruginosa initially grew faster, but soon lost viability.

Keywords

Microcystis aeruginosa Growth Phosphorus metabolism Dark/light cycle Redox potential difference Lake Taihu 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bental, M., U. Pick, M. Avron & H. Degani, 1991. Polyphosphate metabolism in the alga Dunaliella salina studied by 31P-NMR. Biochimca et Biophysica Acta 1092: 21–28.Google Scholar
  2. Bostrom, B., G. Pertsson & B. Broberg, 1988. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170: 133–155.Google Scholar
  3. Chen, Y. W., B. Q. Qin, K. Teubner & M. T. Dokulil, 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research 25: 445–453.CrossRefGoogle Scholar
  4. Currie, D. J. & J. Kalff, 1984. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnology and Oceanography 29: 311–321.Google Scholar
  5. Fuhs, G. W., S. D. Demmerle, E. Canelli & M. Chem, 1972. Characterization of phosphorous-limited planktonic algae. In Nutrients and Eutrophication. American Society of Limnology and Oceanography, Special Symposium 1: 113–132.Google Scholar
  6. Greenberg, A. E., 1985. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC.Google Scholar
  7. Grillo, J. F. & J. Gibson, 1979. Regulation of phosphate accumulation in the unicellular Cyanobacteria Synechococcus. Journal of Bacteriology 140: 508–517.PubMedGoogle Scholar
  8. Harold, F. M., 1963. Inorganic polyphosphate of high molecular weight from aerobacter aerogenes. Journal of Bacteriology 86: 885–887.PubMedGoogle Scholar
  9. Heyer, H. & W. E. Krumbein, 1991. Excretion of fermentation products in dark and anaerobically incubated cyanobacteria. Archives of Microbiology 155: 284–287.CrossRefGoogle Scholar
  10. Howarth, R. W., 1988. Nutrient limitation of net primary production in marine ecosystems. Annual Review of Ecology and Systematics 19: 89–110.CrossRefGoogle Scholar
  11. John, E. H. & K. J. Flynn, 2000. Modelling phosphate transport and assimilation in microalgae; how much complexity is warranted? Ecological Modelling 125: 145–147.CrossRefGoogle Scholar
  12. Johnston, N. A. L., V. S. Campagna, P. R. Hawkins & R. J. Banens, 1994. Response of the eastern rainbowfish (Melanotaenio duboulay) to toxic Microcystis aeruginosa. In Jones, G. J. (ed.), Cyanobacterial Research. CSIRO Cataloguing-in-Publication Entry, Australia: 187–193.Google Scholar
  13. Keasling, J. D. & G. A. Hupf, 1996. Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli. Applied and Environmental Microbiology 62: 743–746.PubMedGoogle Scholar
  14. Kornberg, A., 1995. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. Journal of Bacteriology 177: 491–496.PubMedGoogle Scholar
  15. Kulaev, I., V. Vagabov & T. Kulakovskaya, 1999. New aspects of inorganic polyphosphate metabolism and function. Journal of Bioscience and Bioengineering 88: 111–129.PubMedCrossRefGoogle Scholar
  16. Lawrence, B. A., C. Suarez, A. DePina, E. Click, N. H. Kolodny & M. Allen, 1998. Two internal pools of soluble polyphosphate in the Cyanobacterium Synechocystis sp. Strain PCC 6308: an in vivo 31P NMR spectroscopic study. Archives of Microbiology 169: 195–200.PubMedCrossRefGoogle Scholar
  17. Leventer, H. & J. Eren, 1970. Taste and odor in the reservoirs of the Israel National Waster System. In Shuval, H. I. (ed.), Developments in Water Quality Research. Ann Arbor Humphrey Science Publishers, Mich: 19–37.Google Scholar
  18. Magrath, J. W. & J. P. Quinn, 2000. Intracellular accumulation of polyphosphate by the yeast Candida humicola G-1 in response to acid pH. Applied and Environmental Microbiology 9: 4068–4047.CrossRefGoogle Scholar
  19. Mozelaar, R., S. M. Bijvank & L. J. Stal, 1996. Fermentation and sulfur reduction in the mat-building Cyanobacterium Microcoleus chthonoplastes. Applied and Environmental Microbiology 62: 1752–1758.Google Scholar
  20. Nakano, S., K. Hayakawa, J. Frenette, T. Nakajima, C. M. Jiao, S. Tsujimura & M. Kumagai, 2001. Cyanobacterial blooms in a shallow lake: a large-scale enclosure assay to test the importance of diurnal stratification. Archiv fur Hydrobiologie 150: 491–509.Google Scholar
  21. Noegel, A. & E. C. Gotschlich, 1983. Isolation of a high molecular weight polyphosphate from Neisseria gonorrhoeae. Journal of Experimental Medicine 157: 2049–2060.PubMedCrossRefGoogle Scholar
  22. Oh, H. M., S. J. Lee, M. H. Jang & B. D. Yoon, 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appied and Environmental Microbiology 66: 176–179.CrossRefGoogle Scholar
  23. Preston, T., W. D. P. Stewart & C. S. Reynolds, 1980. Bloom-forming cyanobacterium Microcystis aeruginosa overwinters on the sediment. Nature 288: 365–367.CrossRefGoogle Scholar
  24. Rao, N. N., M. F. Roberts & A. Torriani, 1985. Amount and chain length of polyphosphates in Escherichia coli depend on cell growth conditions. Journal of Bacteriology 162: 242–247.PubMedGoogle Scholar
  25. Revsbech, N. P., B. B. Jorgensen, T. H. Blackburn & Y. Cohen, 1983. Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnology and Oceanography 28: 1062–1074.CrossRefGoogle Scholar
  26. Richardson, L. L. & R. W. Castenholz, 1987. Enhanced survival of the Cyanobacterium Oscillatoria terebriformis in darkness under anaerobic conditions. Applied and Environmental Microbiology 53: 2151–2158.PubMedGoogle Scholar
  27. Roe, J. H. & R. E. Dailey, 1966. Determination of glycogen with the anthrone reagent. Analytical Biochemistry 15: 245–250.PubMedCrossRefGoogle Scholar
  28. Schuddemat, J., R. De Boo, C. C. M. Van leeuwen, P. J. A. Brock & J. Van Steveninck, 1989. Polyphosphate synthesis in yeast. Biochimica et Biophysica Acta 1010: 191–198.PubMedGoogle Scholar
  29. Shi, X. L., L. Y. Yang, X. J. Niu, L. Xiao, Z. M. Kong, B. Q. Qin & G. Gao, 2003. Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Microbiological Research 158: 345–352.PubMedCrossRefGoogle Scholar
  30. Stal, L. J. & R. Moezelaar, 1997. Fermentation in cyanobacteria. FEMS Microbiology Review 21: 179–211.CrossRefGoogle Scholar
  31. Tash, C. J., 1967. Summary. In Bartsch, A. F. (ed.), Proceedings of the Symposium on the Environmental Requirements of Blue-green Algae. Federal Water Pollution Control Administration, Oreg: 103–106.Google Scholar
  32. Weller, D., W. Doemel & T. Brock, 1975. Requirement of low oxidation-reduction potential for photosynthesis in a blue-green alga (Phormidium sp.). Archives of Microbiology 104: 7–13.PubMedCrossRefGoogle Scholar
  33. Zhu, G. W. & C. X. Fan, 2004. Physicochemical characters of sediment in Lake Taihu. In Qin B. Q., W. P. Hu & W. M. Chen (eds), Evolution Process and Mechanism of Water Environment of Lake Taihu. Science Publication Company, Beijing, 170–187 (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Xiaoli Shi
    • 1
    • 2
  • Liuyan Yang
    • 1
    • 2
    Email author
  • Lijuan Jiang
    • 2
  • Fanxiang Kong
    • 1
  • Boqiang Qin
    • 1
  • Guang Gao
    • 1
  1. 1.Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingP.R. China
  2. 2.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingP.R. China

Personalised recommendations