Advertisement

Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.)

  • Lijuan Jiang
  • Liuyan YangEmail author
  • Lin Xiao
  • Xiaoli Shi
  • Guang Gao
  • Boqiang Qin
Part of the Developments in Hydrobiology book series (DIHY, volume 194)

Abstract

Phosphorus release from Microcystis aeruginosa and attached bacterium (Pseudomonas sp.) isolated from Lake Taihu was examined using a phosphorus isotope tracer in order to investigate the phosphorus transference between the two species. Our results reveal that the amount of phosphorus released form 32P-saturated M. aeruginosa is determined by its growth phase and most of phosphorus is assimilated by Pseudomonas finally while the amount of phosphorus released from 32P-saturated Pseudomonas is also determined by the growth phase of M. aeruginosa and most of them are assimilated by M. aeruginosa. The results suggest that phosphorus transference occurs between M. aeruginosa and its attached Pseudomonas. This process makes microenvironment of mucilage of M. aeruginosa attached bacteria maintain relative high amounts of phosphorus. Attached bacteria may be a temporary phosphorus bank to the growth of M. aeruginosa, and assimilation of phosphorus by M. aeruginosa becomes easy when M. aeruginosa is in lag growth phase. Thus, the phosphorus exchange between M. aeruginosa and attached Pseudomonas in microenvironment may be important to microfood web and cyanobacteria bloom.

Keywords

Microcystis aeruginosa Attached bacterium Pseudomonas sp. Phosphorus Lake Taihu 32P release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunberg, A. K., 1999. Contribution of bacteria in the mucilage of Microcystis spp. to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiology Ecology 29: 13–22.CrossRefGoogle Scholar
  2. Caiola, M. G., 1991. Bdellovibrio-like bacteria in Microcystis aeruginosa. Algological Studies 64: 369–376.Google Scholar
  3. Dokulil, M., W. Chen & Q. Cai, 2000. Anthropogenic impacts to large lakes in China: the Tai Hu example. Aquatic Ecosystem Health and Management 3: 81–94.CrossRefGoogle Scholar
  4. Lovejoy, C., J. P. Bowman & G. M. Hallegraeff, 1998. Algicidal effects of a novel marine Pseudoalteromonas isolate (Class Proteobacteria, Gamma Subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Applied Environmental Microbiology 64: 2806–2813.Google Scholar
  5. Manage, P. A., Z. Kawabata & S. Nakano, 2000. Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp.. Aquatic Microbial Ecology 22: 111–117.CrossRefGoogle Scholar
  6. Manage, P. A., Z. Kawabata & S. Nakano, 2001. Dynamics of cyanophage-like particles and algicidal bacteria causing Microcystis aeruginosa mortality. Limnology 2: 73–78.CrossRefGoogle Scholar
  7. Oh, H. M. & S. J. Lee, 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Applied and Environmental Microbiology 66: 176–179.PubMedCrossRefGoogle Scholar
  8. Okada, M. & R. Sudo, 1982. Phosphorus uptake and growth of bule-green alga, Microcystis aeruginosa. Biotechnology and Bioengineering 24: 143–152.CrossRefPubMedGoogle Scholar
  9. Pellegrini, S., L. Allievi, B. Lolli & M. G. Caiola, 1997. Bdellovibrio isolation from the Lake Varese (Italy). Annali Di Microbiologia ED Enzimologa 47: 121–129.Google Scholar
  10. Shi, X., L. Yang, X. Niu & L. Xiao, 2003. Intraintracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Micobiological Research 158: 345–352.CrossRefGoogle Scholar
  11. Shi, X., L. Yang, F. Wang, L. Xiao, L. Jiang, Z. Kong, G. Gao & B. Qin, 2004. Growth and phosphate uptake kinetics of Microcystis aeruginosa under varying environmental conditions. Journal of Environmental Sciences 16: 88–92 (in Chinese).Google Scholar
  12. Sommaruga, R. & R. D. Robarts, 1997. The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiology Ecology 24: 187–200.CrossRefGoogle Scholar
  13. Steppe, T. F., J. B. Olson, H. W. Paerl, R. W. Litaker & J. Belnap, 1996. Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiology Ecology 21: 149–156.CrossRefGoogle Scholar
  14. Van Hannen, E. J., G. Zwart & H. J. Laanbroek, 1999. Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Applied and Environmental Microbiology 65: 795–801.PubMedGoogle Scholar
  15. Whitton, B. A., 1973. Interactions with other organisms. In Carr, N. G. & B. A. Whitton (eds), The Biology of Blue-green Algae. Blackwell, Oxford: 415–433.Google Scholar
  16. Worm, J., 1998. Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquatic Microbial Ecology 14(1): 19–28.CrossRefGoogle Scholar
  17. Zou, D., L. Xiao, L. Yang & Y Wan, 2005. Effects of Phosphorus Sources of different forms on phosphorus metabolism of Microcystis aeruginosa and adhesive Pseudomonas sp.. Environmental Science 26(3): 118–121 (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Lijuan Jiang
    • 1
  • Liuyan Yang
    • 1
    • 2
    Email author
  • Lin Xiao
    • 1
  • Xiaoli Shi
    • 1
    • 2
  • Guang Gao
    • 2
  • Boqiang Qin
    • 2
  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingP. R. China
  2. 2.Nanjing Institute of Geography and Limnology, CASNanjingP. R. China

Personalised recommendations